Что такое дебит скважины и как его определить. Как рассчитать дебит скважины Как сделать расчет дебита артезианской скважины

Дебит скважины - это основной параметр скважины , показывающий, сколько воды можно из нее получить за определенный промежуток времени. Измеряется данная величина в м 3 /день, м 3 /час, м 3 /мин. Следовательно, чем больше дебит скважины, тем выше ее производительность.

Определять дебит скважины нужно в первую очередь для того, чтобы знать на какой объем жидкости вы можете рассчитывать. Например, хватит ли воды для бесперебойного использования в ванной комнате, в огороде для полива и т.д. Кроме того, данный параметр отлично помогает в выборе насоса для подачи воды. Так, чем он больше, тем более производительный насос можно использовать. Если же покупать насос не обращая внимания на дебит скважины, то может случиться так, что он будет высасывать воду из скважины быстрей, чем она будет наполняться.

Статический и динамический уровни воды

Для того, чтобы рассчитать дебет скважины необходимо знать статический и динамический уровни воды. Первая величина обозначает уровень воды в спокойном состоянии , т.е. в тот момент, когда откачка воды еще не производилась. Вторая величина определяет устоявшийся уровень воды во время работы насоса , т.е. когда скорость ее выкачивания равна скорости наполнения скважины (вода перестает убывать). Другими словами, данный дебит напрямую зависит от производительности насоса, которая указывается в его паспорте.

Оба эти показателя измеряются от поверхности воды до поверхности земли. Единица измерения при этом чаще всего выбирается метр. Так, к примеру, уровень воды был зафиксирован на отметке 2 м, а после включения насоса он установился на отметке 3 м, следовательно, статический уровень воды равен 2 м, а динамический - 3 м.

Также здесь хотелось бы отметить, что если разница между двумя этими величинами не значительная (например, 0,5-1 м), то можно сказать, что дебет скважины большой и скорее всего выше производительности насоса.

Расчет дебита скважины

Как же определяется дебит скважины? Для этого требуется высокопроизводительный насос и мерная емкость для выкаченной воды, желательно, как можно больших размеров. Сам же расчет лучше рассматривать на конкретном примере.

Исходные данные 1:

  • Глубина скважины - 10 м .
  • Начало уровня фильтрационной зоны (зона забора воды с водоносного слоя) - 8 м .
  • Статический уровень воды - 6 м .
  • Высота столба воды в трубе - 10-6 = .
  • Динамический уровень воды - 8,5 м . Данная величина отражает оставшееся количество воды в скважине после откачки из нее 3 м 3 воды, при затраченном времени на это 1 час. Другими словами, 8,5 м - это динамический уровень воды при дебете 3 м 3 /час, который снизился на 2,5 м.

Расчет 1:

Дебит скважины рассчитывается по формуле:

D ск = (U/(H дин -Н ст))·H в = (3/(8,5-6))*4 = 4,8 м 3 /ч,

Вывод: дебет скважины равен 4,8 м 3 /ч .

Представленный расчет очень часто применяется бурильщиками. Но он несет в себе очень большую погрешность. Так как этот расчет предполагает, что динамический уровень воды будет увеличиваться прямопропорционально скорости выкачивания воды. Например, при увеличении откачки воды до 4 м 3 /ч, согласно ему, уровень воды в трубе падает на 5 м, а это неверно. Поэтому есть более точная методика с включением в расчет параметров второго водозабора для определения удельного дебита.

Что нужно при этом делать? Необходимо после первого водозабора и снятия данных (предыдущий вариант), дать воде устояться и вернуться к своему статическому уровню. После этого произвести выкачивание воды с другой скоростью, например, 4 м 3 /час.

Исходные данные 2:

  • Параметры скважины те же.
  • Динамический уровень воды - 9,5 м . При интенсивности водозабора 4 м 3 /ч.

Расчет 2:

Удельный дебит скважины рассчитывается по формуле:

D у = (U 2 -U 1)/(h 2 -h 1) = (4-3)/(3,5-2,5) = 1 м 3 /ч,

В итоге получается, что повышение динамического уровня воды на 1 м способствует приросту дебита на 1 м 3 /ч. Но это только при условии, что насос будет находиться не ниже начала фильтрационной зоны.

Реальный дебит здесь вычисляется по формуле:

D ск = (Н ф -Н ст)·D у = (8-6)·1 = 2 м 3 /ч,

  • H ф = 8 м - начало уровня фильтрационной зоны.

Вывод: дебет скважины равен 2 м 3 /ч .

После сравнения видно, что величины дебита скважины в зависимости от методики расчета отличаются друг от друга более, чем в 2 раза. Но второй расчет то же не точный. Дебит скважины, вычисленный через удельный дебит, лишь приближен к реальном значению.

Способы увеличения дебита скважины

В заключении хотелось бы упомянуть о том, как можно увеличить дебит скважины. Способа по сути дела два. Первый способ - это прочистить эксплуатационную трубу и фильтр в скважине. Второй заключается в том, чтобы проверить работоспособность насоса. Вдруг именно по его причине снизилось количество добываемой воды.

1

Методики определения предельных безводных дебитов газовых скважин при наличии экрана и интерпретация результатов исследования таких скважин разработаны недостаточно. До настоящего времени вопрос о возможности увеличения предельных безводных дебитов скважин, вскрывающих газоносные пласты с подошвенной водой, способом создания искусственного экрана, изучен также недостаточно полно. Здесь приводится аналитическое решение указанной задачи и рассмотрен случай, когда несовершенная скважина вскрыла однородно-анизотропный круговой пласт с подошвенной водой и эксплуатируется при наличии непроницаемого экрана. Разработана приближенная методика расчета предельных безводных дебитов вертикальных газовых скважин при нелинейном законе фильтрации, обусловленных наличием непроницаемого забойного экрана. Установлено, что величина предельного безводного дебита зависит не только от размеров экрана, но и от его положения по вертикали газонасыщенного пласта; определено оптимальное положение экрана, характеризующее наибольшим предельным дебитом. Произведены практические расчеты на конкретных примерах.

методика расчета

безводный дебит

вертикальная скважина

газовая скважина

1. Карпов В.П., Шерстняков В.Ф. Характер фазовых проницаемостей по промысловым данным. НТС по добыче нефти. – М.: ГТТИ. – №18. – С. 36-42.

2. Телков А.П. Подземная гидрогазодинамика. – Уфа, 1974. – 224 с.

3. Телков А.П., Грачёв С.И. и др. Особенности разработки нефтегазовых месторождений (Часть II). – Тюмень: из-во ОООНИПИКБС-Т, 2001.– 482 с.

4. Телков А.П., Стклянин Ю.И. Образование конусов воды при добычи нефти и газа. – М.: Недра, 1965.

5. Стклянин Ю.И., Телков А.П. Приток к горизонтальной дрене и несовершенной скважине в полосообразном анизотропном пласте. Расчет предельных безводных дебитов. ПМТФ АН СССР. – № 1. – 1962.

В данной статье приводится аналитическое решение указанной задачи и рассмотрен случай, когда несовершенная скважина вскрыла однородно-анизотропный круговой пласт с подошвенной водой и эксплуатируется при наличии непроницаемого экрана (рисунок 1). Считаем, что газ реальный, движение газа, установившееся и подчиняется нелинейному закону фильтрации.

Рис.1. Трехзонная схема притока газа к несовершенной скважине с экраном

Исходя из принятых условий, уравнения притока газа к скважине в зонах I, II, III соответственно примут вид:

; ; (2)

; ; , (3)

где a и b определяются по формулам. Остальные обозначения показаны на схеме (см. рисунок 1). Уравнения (2) и (3) в данном случае описывают приток к укрупненным скважинам соответственно с радиусами rэ и (rэ+ho).

Условие устойчивости на границе раздела газ-вода (см. линию СD) по закону Паскаля запишется уравнением

где ρв - плотность воды, - капиллярное давление как функция насыщенности водой на границе раздела газ-вода.

Решая совместно (1)-(3), после ряда преобразований, получаем уравнение притока

Из совместного решения (2) и (4) получаем квадратное уравнение относительно безразмерного предельного дебита , один из корней которого с учетом (7) и после ряда преобразований представляется выражением:

где (7)

(8)

Переход к размерному предельному безводному дебиту осуществляется по формулам:

(9)

где - средневзвешенное давление в газовой залежи.

Таблица 1

Значения фильтрационных сопротивлений, обусловленных экраном на забое

Добавочные фильтрационные сопротивления и , обусловленные экраном, рассчитаны на ЭВМ по формулам (6), затабулированы (таблица 1) и представлены графиками (рисунок 2). Функция (6) рассчитана на ЭВМ и представлена графически при (рисунок 3). Предельная депрессия может быть установлена по уравнению притока (4.4.4) при Q=Qпр.

Рис.2. Фильтрационные сопротивления и , обусловленные экраном при устойчивой границе раздела газ-вода

Рис.3. Зависимость безразмерного предельного дебита qпр от относительного вскрытия при параметрах , ρ=1/æ* и α

На рисунке 3 приведены зависимости безразмерного предельного дебита q от степени вскрытия при параметрах Rэ и α. Кривые показывают, что с увеличением размера экрана (<20) безводные дебиты увеличиваются. Максимум на кривых соответствует оптимальному вскрытию пласта, при котором можно получить наибольший предельный безводный дебит для заданного размера экрана. С увеличением параметра ρ=1/æ* (уменьшением анизотропии) предельный безводный дебит увеличивается, а уменьшение безводного дебита для малых вскрытий объясняется увеличением фильтрационных сопротивлений, обусловленных экраном на забое.

Пример. Дренируется газовая шапка, контактирующая с подошвенной водой. Требуется определить: предельный дебит газовой скважины, ограничивающий прорыв ГВК к забою и предельный дебит при наличии непроницаемого экрана.

Исходные данные: Рпл=26,7 МПа; К=35,1·10-3 мкм2; Ro=300 м; ho=7,2 м; =0,3; =978 кг/м3; =210 кг/м3 (в пластовых условиях); æ*=6,88; =0,02265 МПа·с (в пластовых условиях); Тпл=346 К; Тст=293 К; Рат=0,1013 МПа; rэ=ho=7,2 м и rэ=0,5ho=3,6 м.

Определяем параметр размещения

Из графиков находим безразмерный предельный безводный дебит жидкости q(ρо,)q(6,1;0,3)=0,15.

По формуле (9) подсчитываем:

Qo=52,016 тыс. м3/сут; тыс. м3/сут.

Определяем безразмерные параметры при наличии экрана:

По графикам (см. рисунок 2) или таблице находим добавочные фильтрационные сопротивления: С1= С1(0,15;0,3;1)=0,6; С2= С2(0,15;0,3;1)=3,0.

По формуле (7) находим безразмерный параметр α=394,75.

По формуле (9) подсчитываем дебит, который составил Qo47,9 тыс.м3/сут.

Расчеты по формулам (7) и (8) дают: Х=51,489 и Y=5,773·10-2.

Безразмерный предельный дебит, рассчитанный по формуле (6), равен q=1,465.

Определяем размерный предельный дебит, обусловленный экраном, из соотношения Qпр=qQo=1,465·47,970,188 тыс.м3/сут.

Расчетный предельный дебит без экрана с аналогичными исходными параметрами составляет 7,8 тыс. м3/сут. Таким образом, в рассматриваемом случае наличие экрана увеличивает предельный дебит почти в 10 раз.

Если принять rэ=3,6 м; т.е. в два раза меньше размеру, чем газонасыщенная толщина, тогда получаем следующие расчетные параметры:

2; С1=1,30; С2=5,20; Х=52,45; Y=1,703·10-2; q=0,445 и Qпр=21,3 тыс.м3/сут. В данном случае предельный дебит увеличивается всего лишь в 2,73 раза.

Следует отметить, что величина предельного дебита зависит не только от размеров экрана, но и от его положения по вертикали газонасыщенного пласта, т.е. от относительного вскрытия пласта , если экран располагается непосредственно перед забоем. Исследование решения (6) показало, что существует оптимальное положение экрана, зависящее от параметров ρ, α, Rэ, которое соответствует наибольшему предельному дебиту. В рассмотренной задаче оптимальным вскрытием является =0,6.

Принимаем ρ=0,145 и =1. По изложенной методике получаем расчетные параметры: С1=0,1; С2=0,5; X=24,672; Y=0,478.

Определяем безразмерный дебит:

q=24,672(-1) 5,323.

Размерный предельный дебит находится по формуле (9)

Qпр=qQo=5,323·103=254,94 тыс.м3/сут.

Таким образом, дебит по сравнению с относительным вскрытием =0,3 увеличился в 3,6 раза.

Изложенный здесь способ определения предельного безводного дебита является приближенным, так как он рассматривает устойчивость конуса, вершина которого уже достигла радиуса экрана rэ.

При из приведенных решений получим формулы для определения q() для несовершенной газовой скважины в условиях нелинейного закона фильтрации с учетом добавочных фильтрационных сопротивлений. Эти формулы также будут приближенными, и по ним рассчитывается завышенное значение предельного безводного дебита.

Для построения двухчленного уравнения притока газа в условиях предельно-устойчивого конуса подошвенной воды необходимо знать фильтрационные сопротивления именно в этих условиях. Определить их можно исходя из теории устойчивого конусообразования Маскета-Чарного. Уравнение линии тока, ограничивающей область пространственного движения к несовершенной скважине в однородно-анизотропном пласте, когда уже произошел прорыв вершины конуса к забою скважины, в соответствии с теорией безнапорного движения, запишем в виде

(10)

где q= - безразмерный предельный безводный дебит, определяемый по приведенным (известным) приближенным формулам и графикам; - безразмерный параметр.

Выражая скорость фильтрации через расход , подставляя уравнение границы раздела (10) в дифференциальное уравнение (1), учитывая закон газового состояния и интегрируя по давлению Р и радиусу r в соответствующих пределах, получим уравнение притока вида (12) и формулы (13), в которых следует принять:

; , (11)

(12)

где Li(x) - интегральный логарифм, который связан с интегральной функцией зависимостью .

(13)

При x>1 интеграл (13) расходится в точке t=1. В этом случае под Li(x) надо понимать значение несобственного интеграла. Поскольку методы определения безразмерных предельных безводных дебитов хорошо известны, то, очевидно, нет необходимости табулировать функции (11) и (12).

1. Разработана приближенная методика расчета предельных безводных дебитов вертикальных газовых скважин при нелинейном законе фильтрации, обусловленных наличием непроницаемого забойного экрана. Безразмерные предельные дебиты и соответствующие добавочные фильтрационные сопротивления рассчитаны на компьютере, результаты затабулированы и приведены соответствующие графические зависимости.

2. Установлено, что величина предельного безводного дебита зависит не только от размеров экрана, но и от его положения по вертикали газонасыщенного пласта; определено оптимальное положение экрана, характеризующее наибольшим предельным дебитом.

3. Произведены практические расчеты на конкретном примере.

Рецензенты:

Грачев С.И., д.т.н., профессор, заведующий кафедрой «Разработка и эксплуатация нефтяных и газовых месторождений», Институт геологии и нефтегазодобычи, ФГБОУ ТюмГНГУ, г. Тюмень;

Сохошко С.К., д.т.н., профессор, профессор кафедры «Разработка и эксплуатация нефтяных и газовых месторождений», Институт геологии и нефтегазодобычи, ФГБОУ ТюмГНГУ, г. Тюмень.

Библиографическая ссылка

Каширина К.О., Забоева М.И., Телков А.П. МЕТОДИКА РАСЧЕТА ПРЕДЕЛЬНЫХ БЕЗВОДНЫХ ДЕБИТОВ ВЕРТИКАЛЬНЫХ ГАЗОВЫХ СКВАЖИН ПРИ НЕЛИНЕЙНОМ ЗАКОНЕ ФИЛЬТРАЦИИ И НАЛИЧИИ ЭКРАНА // Современные проблемы науки и образования. – 2015. – № 2-2.;
URL: http://science-education.ru/ru/article/view?id=22002 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Владимир Хомутко

Время на чтение: 4 минуты

А А

Способы расчёта дебита нефти

При определении продуктивности определяют её дебит, который является очень важным показателем при расчете планируемой продуктивности.

Важность этого показателя трудно переоценить, поскольку с его помощью определяют – окупит полученное с конкретного участка сырье стоимость его разработки или нет.

Формул и методик расчета этого показателя несколько. Многие предприятия пользуются формулой французского инженера Дюпюи ( Дюпуи), который много лет посвятил изучению принципов движения грунтовых вод. С помощью расчета по этой методике достаточно просто определить, целесообразно ли разрабатывать тот или иной участок месторождения с экономической точки зрения.

Дебитом в данном случае называется объем жидкости, который поставляет скважина за определенный промежуток времени.

Стоит сказать, что достаточно часто добытчики пренебрегают расчетом этого показателя при установке добывающего оборудования, однако это может привести к весьма печальным последствиям. Рассчитываемая величина, которая определяет количество добываемой нефти, имеет несколько методик определения, о которых мы поговорим далее.

Зачастую этот показатель по-другому называют «производительность насоса», однако это определение не совсем точно характеризует получаемую величину, поскольку свойства насоса обладают собственными погрешностями. В связи с этим определяемый расчетным путем объем жидкостей и газов в некоторых случаях сильно разнится с заявленным.

Вообще значение этого показателя рассчитывается для того, чтобы выбрать насосное оборудование. Заранее определив с помощью расчета производительность определенного участка, можно уже на этапе планирования разработки исключить не подходящие по своим параметрам насосы.

Расчет этого значения необходим любому добывающему предприятию, поскольку нефтеносные участки с низкой производительностью просто могут оказаться нерентабельными, и разработка их будет убыточной. Кроме того, неверно выбранное насосное оборудование из-за вовремя не сделанных расчетов может привести к тому, что предприятие вместо планируемой прибыли получит существенные убытки.

Еще одним важным фактором, свидетельствующим об обязательности такого расчета для каждой конкретной скважины, является тот факт, что даже дебиты расположенных поблизости уже работающих скважин могут существенно отличаться от дебита новой.

Чаще всего такая существенная разница объясняется конкретными значениями подставляемых в формулы величин. Например, проницаемость пласта может иметь существенные различия в зависимости от глубины залегания продуктивного слоя, а чем ниже проницаемость пласта, тем меньше производительность участка и, разумеется, ниже его рентабельность.

Расчет дебита не только помогает при выборе насосного оборудования, но позволяет определить оптимальное место бурения колодца.

Установка новой добывающей вышки является рискованным делом, поскольку даже самые квалифицированные специалисты в области геологии до конца не знают всех тайн земли.

В настоящее время существует множество разновидностей профессионального оборудования для нефтедобычи, но для того, чтобы сделать правильный выбор, необходимо сначала определить все необходимые буровые параметры. Правильный расчет таких параметров позволит подобрать оптимальный рабочий комплект, который будет наиболее эффективен для участка с конкретной производительностью.

Способы расчета этого показателя

Как мы сказали ранее, методов для расчета этого показателя существует несколько.

Чаще всего используют две методики – стандартную, и с применением упомянутой нами выше формулы Дюпюи.

Стоит сразу сказать, что второй способ хотя и сложнее, но дает более точный результат, поскольку французский инженер всю свою жизнь посвятил изучению этой сферы, в результате чего в его формуле используется гораздо больше параметров, чем в стандартной методике. Однако, мы рассмотрим оба способа.

Стандартный расчет

Эта методика основана на следующей формуле:

D = H x V / (Hд – Hст), где

D – это значение дебита скважины;

Н – это высота водного столба;

V – производительность насоса;

Нд – динамический уровень;

Нст – статический уровень.

За показатель статического уровня в данном случае берется расстояние от начального уровня подземных вод до начальных почвенных слоев, а в качестве динамического уровня используется абсолютная величина, которую определяют с помощью замера уровня воды после её откачивания, используя измерительный инструментарий.

Существует понятие оптимального показателя дебита нефтеносного участка месторождения. Его определяют как для определения общего уровня депрессии конкретной скважины, так и для всего продуктивного пласта целиком.

Формула расчета среднего уровня депрессии подразумевает значение забойного давления Рзаб = 0. Дебит конкретной скважины, который был рассчитан для оптимального показателя депрессии, и является оптимальным значением этого показателя.

Механическое и физическое давление на пласт может привести к обрушению некоторых частей внутренних стенок ствола. Вследствие этого, потенциальный дебит нередко приходится уменьшать механическим способом, чтобы не нарушать бесперебойность добычи и сохранить прочность и целостность стенок ствола.

Как видите, стандартная формула является простейшей, в результате чего результат она дает с достаточно существенной погрешностью. Чтобы получить более точный и объективный результат, целесообразно использовать пусть и более сложную, но гораздо более точную формулу Дюпюи, учитывающую большее количество важных параметров конкретного участка.

Расчет по Дюпюи

Стоит сказать, что Дюпюи был не только квалифицированным инженером, но и прекрасным теоретиком.

Он вывел даже не одну, а две формулы, первая из которых применяется для определения потенциальной гидропроводности и продуктивности для насосного оборудования и нефтеносного пласта, в вторая позволяет проводить расчет для не идеальных насоса и месторождения, основываясь на показателях их фактической продуктивности.

Итак, разберем первую формулу Дюпюи:

N0 = kh / ub * 2∏ / ln(Rk/rc), где

N0 – это показатель потенциальной продуктивности;

Kh/u – коэффициент гидропроводности нефтеносного пласта;

b – коэффициент, учитывающий расширение по объему;

∏ – это число Пи = 3,14;

Rk – это значение радиуса контурного питания;

Rc – значение долотного радиуса, измеренного по всему расстоянию до вскрытого продуктивного пласта.

Вторая формула Дюпюи:

N = kh/ub * 2∏ / (ln(Rk/rc)+S, где

N – это показатель фактической продуктивности;

S – так называемый скин-фактор, который определяет фильтрационное сопротивление течению.

Остальные параметры расшифровываются так же, как и в первой формуле.

Вторая формула Дюпюи для определения фактической продуктивности конкретного нефтеносного участка в настоящее время используется практически всеми добывающими компаниями.

Стоит сказать, что для повышения производительности месторождения в некоторых случаях используют технологию гидравлического разрыва продуктивного пласта, суть которой – механическое образование в нем трещин.

Периодически возможно проведение так называемой механической регулировки дебита нефти в скважине. Она проводится с помощью повышения забойного давления, которое приводит к снижению уровня добычи и показывает фактические возможности каждого нефтеносного участка месторождения.

Кроме того, чтобы повысить дебит, применяют и термокислотную обработку.

При помощи различных растворов, содержащих в себе кислотные жидкости, производят очистку породы от образовавшихся в процессе бурения и эксплуатации отложений смол, солей и прочих химических веществ, которые мешают качественной и эффективной разработке продуктивного пласта.

Сначала кислотную жидкость заливают в ствол до тех пор, пока она не заполнит площадь перед разрабатываемым пластом. Затем закрывают задвижку, и под давлением этот раствор проходит дальше вглубь. Остатки этого раствора вымывают либо нефтью, либо водой после возобновления добычи углеводородного сырья.

Стоит сказать, что естественное снижение производительности нефтяных месторождений находится на уровне от 10 до 20 процентов в год, если считать от первоначальных значений этого показателя, полученных на момент запуска добычи. Описанные выше технологии позволяют увеличить интенсивность нефтедобычи на месторождении.

Дебит необходимо рассчитывать через определенные периоды времени. Это помогает при формировании стратегии развития любой современной нефтедобывающей компании, которая поставляет сырье предприятиям, производящим различные нефтепродукты.

Основным элементом системы водоснабжения является источник водоснабжения. Для автономных систем в частных домовладениях, на дачах или фермерских хозяйствах в качестве источников используют колодцы или скважины. Принцип водоснабжения прост: водоносный слой наполняет их водой, которая с помощью насоса подается пользователям. При длительной работе насоса, какова бы ни была его мощность, он не может подать воды больше, чем водонос отдает в трубу.

Любой источник имеет предельный объем воды, которую он может отдать потребителю за единицу времени.

Определения дебита

После бурения, проводившая работу организация предоставляет протокол испытания, либо паспорт на скважину, в который вносится все необходимые параметры. Однако, при бурении для домохозяйств, подрядчики часто вносят в паспорт приблизительные значение.

Перепроверить достоверность информации или рассчитать дебит вашей скважины можно своими руками.

Динамика, статика и высота столба воды

Прежде чем приступить к измерениям, нужно понять, что такое статический и динамический уровень воды в скважине, а также высота столба воды в скважинной колонне. Замер данных параметров необходим не только для расчета производительности скважины, но и для правильного выбора насосного агрегата для системы водоснабжения.

  • Статический уровень – это высота водяного столба при отсутствии водозабора. Зависит от внутрипластового давления и устанавливается во время простоя (как правило не менее часа);
  • Динамический уровень – установившейся уровень воды во время водозабора, то есть когда приток жидкости равняется оттоку;
  • Высота столба – разница между глубиной скважины и статическим уровнем.

Динамика и статика измеряется в метрах от земли, а высота столба от дна скважины

Произвести измерение можно с помощью:

  • Электроуровнемера;
  • Электрода, замыкающего контакт при взаимодействии с водой;
  • Обычного грузика, подвязанного к веревке.

Замер с помощью сигнализирующего электрода

Определение производительности насоса

При расчете дебита необходимо знать производительность насоса во время откачки. Для этого можно воспользоваться следующими способами:

  • Посмотреть данные расходомера или счетчика;
  • Ознакомиться с паспортом на насос и узнать производительность по рабочей точке;
  • Посчитать приблизительной расход по напору воды.

В последнем случае, необходимо на выходе водоподъемной трубы закрепить в горизонтальном положении трубу меньшего диаметра. И произвести следующие замеры:

  • Длину трубы (мин 1,5 м.) и ее диаметр;
  • Высоту от земли до центра трубы;
  • Длину выброса струи от конца трубы до точки падения на землю.

После получения данных необходимо сопоставить их по диаграмме.


Сопоставьте данные по аналогии с примером

Измерение динамического уровня и дебита скважины нужно производить насосом с производительностью не менее вашего расчетного пикового расхода воды.

Упрощенный расчет

Дебит скважины – это отношение произведения интенсивности водооткачки и высоты водяного столба к разности между динамическим и статическим водными уровнями. Для определения дебита скважины определения используется формула:

Dт =(V/(Hдин-Нст))*Hв , где

  • Dт –искомый дебит;
  • V – объем откачиваемой жидкости;
  • Hдин – динамический уровень;
  • Hст – статический уровень;
  • Нв – высота столба воды.

Например, мы имеем скважину глубиной 60 метров; статика которой составляет 40 метров; динамический уровень при работе насоса производительностью 3 куб.м/час установился на отметке 47 метров.

Итого, дебит составит: Dт = (3/(47-40))*20= 8,57 куб.м/час.

Упрощенный метод измерений включает замер динамического уровня при работе насоса с одной производительностью, для частного сектора этого может быть достаточно, но для определения точной картины – нет.

Удельный дебит

С увеличением производительности насоса, динамический уровень, а соответственно и фактический дебит снижается. Поэтому более точно водозабор характеризует коэффициент продуктивности и удельный дебит.

Для вычисления последнего следует произвести не один, а два замера динамического уровня при разных показателях интенсивности водозабора.

Удельный дебит скважины – объем воды, выдаваемой при снижении ее уровня за каждый метр.

Формула определяет его как отношение разности большего и меньшего значений интенсивности водозабора к разности между величинами падения водного столба.

Dуд=(V2-V1)/(h2-h1), где

  • Dуд – удельный дебит
  • V2 – объем откачиваемой воды при втором водозаборе
  • V1 – первичный откачиваемый объем
  • h2 – снижение уровня воды при втором водозаборе
  • h1 – снижение уровня при первом водозаборе

Возвращаясь к нашей условной скважине: при водозаборе с интенсивностью 3 куб.м/час, разница между динамикой и статикой составила 7 м.; при повторном замере с производительностью насоса в 6 куб.м/час разница составила 15 м.

Итого, удельный дебит составит: Dуд =(6-3)/(15-7)= 0,375 куб.м/час

Реальный дебит

Расчет строится на основании удельного показателя и расстоянии от поверхности земли до верхней точки фильтровальной зоны, учитывая условие, что насосный агрегат не будет погружен ниже. Данный расчет максимально соответствует реальности.

D т = (H ф- H ст ) * D уд, где

  • Dт –дебит скважины;
  • Hф – расстояние до начала фильтровальной зоны (в нашем случае примем за 57 м.);
  • Hст – статический уровень;
  • Dуд – удельный дебит.

Итого, реальный дебит составит: Dт =(57-40)*0,375= 6,375 куб.м/час.

Как видно, в случае с нашей воображаемой скважиной, разница между упрощенным и последующем измерением составила почти 2,2 куб.м/час в сторону уменьшения производительности.

Снижение дебита

В ходе эксплуатации производительность скважины может уменьшаться, основной причиной снижения дебита является засорение, а для его увеличения до прежнего уровня необходимо производить очистку фильтров.

Со временем рабочие колеса центробежного насоса могут износиться, особенно если ваша скважина на песке, в этом случае его производительность станет ниже.

Однако, прочистка может не помочь, если изначально у вас оказалась малодебитная водяная скважина. Причины этого разные: диаметр эксплуатационной трубы недостаточен, она попала мимо водоносного слоя или он содержит мало влаги.

РАСЧЕТ ДЕБИТА ГАЗОВЫХ СКВАЖИН С ГОРИЗОНТАЛЬНЫМ ОКОНЧАНИЕМ Ушакова А.В.

Ушакова Анастасия Вадимовна - магистрант, кафедра разработки и эксплуатации нефтяных и газовых месторождений, Тюменский индустриальный университет, г. Тюмень

Аннотация: для обоснования режима работы скважины и прогнозирования параметров разработки необходимо, в первую очередь, произвести расчет продуктивности скважины - установить зависимость между дебитом скважины и депрессией. Дебит скважины, а также глубина залегания пласта, на который планируется бурение, влияют на конструкцию скважины, кроме того при выборе конструкции необходимо обеспечить минимальное значения потерь давления по стволу. В случае горизонтальной (пологой) скважины потери давления проявляются также в горизонтальной части ствола. В данной работе описаны основные виды гидравлических сопротивлений, встречающиеся при движении газа к горизонтальной скважине, и приведены методы расчета профиля притока и дебита горизонтальной скважины.

Ключевые слова: горизонтальная газовая скважина, профиль притока, потери давления.

Вопросом притока газа к горизонтальным скважинам занимались З.С. Алиев, В.В. Шеремет , В.А. Черных , Сохошко С.К. , Телков А.П. .

Основные трудности аналитических решений задач притока к горизонтальным скважинам связаны с нелинейной зависимостью между градиентом давления и скоростью фильтрации, а также определением потерь на трение при движении газа и газоконденсатной смеси в горизонтальном стволе, особенно при значительных дебитах и большой длине ствола .

Сохошко С. К. выделяет 3 группы работ, посвященных производительности горизонтальных газовых скважин:

1 Сравнительно точное решение о притоке газа к горизонтальной скважине при линейной зависимости между градиентом давления и скоростью фильтрации;

2. Приближенное решение задачи о притоке газа к горизонтальной скважине при нелинейной зависимости между градиентом давления и скоростью фильтрации;

3 Точное численное решение задачи о притоке газа к горизонтальной скважине при нелинейном законе фильтрации, изложенное в работе и линейном законе;

Недостатком данных работ является то, что в них принимается постоянным забойное давление по длине горизонтального ствола, а также не учитывается влияние устьевого давления на продуктивность горизонтальных скважин. В результате, получено прямое отношение продуктивности и длины горизонтального участка.

Тем не менее, многие исследователи заявляют, что данная схема расчета производительности в корне не верна . Для горизонтальных скважин знание о распределении забойного давления по стволу имеет более важную роль, чем для вертикальных. Это связано с тем, что площадь зоны дренирования в горизонтальной скважине больше по сравнению в вертикальной.

Одно из решений, в котором учитывается изменение забойного давления при расчете производительности, получено З.С. Алиевым и А.Д. Седых . Также решение профиля притока впервые с учетом всех видов гидравлических сопротивлений, в том числе местных сопротивлений перфорационных отверстий, их расположения и плотности, а также с учетом угла наклона для горизонтальной газовой скважины получено Сохошко С.К. .

| 37 | Современные инновации № 2(30) 2018

Список литературы

1. Алиев З.С., Шеремет В.В. Определение производительности горизонтальных скважин, вскрывших газовые и газонефтяные пласты М.: Недра, 1995.



Поделиться