Что значит черная дыра. Горизонт образования нового мира

Черные дыры, темная материя, темное вещество… Это, несомненно, самые странные и загадочные объекты в космосе. Их причудливые свойства могут бросить вызов законам физики Вселенной и даже природе существующей действительности. Чтобы понять, что же такое черные дыры, ученые предлагают “сменить ориентиры”, научиться думать нестандартно и применить немного фантазии. Черные дыры образуются из ядер супер массивных звёзд, которые можно охарактеризовать как область пространства, где огромная масса сосредоточенна в пустоте, и ничего, даже свет не может там избежать гравитационного притяжения. Это та область, где вторая космическая скорость превышает скорость света: И чем более массивен объект движения, тем быстрее он должен двигаться для того, чтобы избавиться от силы своей тяжести. Это известно как вторая космическая скорость.

Энциклопедия Кольера называет черными дырами область в пространстве, возникшую в результате полного гравитационного коллапса вещества, в которой гравитационное притяжение так велико, что ни вещество, ни свет, ни другие носители информации не могут ее покинуть. Поэтому внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют “горизонтом событий”.

История открытия

Черные дыры, предсказанные общей теорией относительности (теорией гравитации, предложенной Эйнштейном в 1915) и другими, более современными теориями тяготения, были математически обоснованы Р.Оппенгеймером и Х. Снайдером в 1939. Но свойства пространства и времени в окрестности этих объектов оказались столь необычными, что астрономы и физики в течение 25 лет не относились к ним серьезно. Однако астрономические открытия в середине 1960-х годов заставили взглянуть на черные дыры как на возможную физическую реальность. Новые открытия и изучение может принципиально изменить наши представления о пространстве и времени, проливая свет на миллиарды космических тайн.

Образование черных дыр

Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет “битву с гравитацией”: ее гравитационный коллапс будет остановлен давлением “вырожденного” вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой.

Черная дыра – дырка от бублика?

То, что не излучает свет, заметить непросто. Одним из способов поиска черной дыры является поиск областей в открытом космосе, которые обладают большой массой и находятся в темном пространстве. При поиске подобных типов объектов астрономы обнаружили их в двух основных областях: в центрах галактик и в двойных звездных системах нашей Галактики. Всего же, как предполагают учёные, существует десятки миллионов таких объектов.

В настоящее время единственный достоверный способ отличить чёрную дыру от объекта другого типа состоит в том, чтобы измерить массу и размеры объекта и сравнить его радиус с

Черные дыры - это одно из самых странных явлений во Вселенной. Во всяком случае, на данном этапе развития человечества. Это объект с бесконечной массой и плотностью, а значит и притяжением, за пределы которого не может вырваться даже свет - поэтому дыра черная. Сверхмассивная черная дыра может втянуть в себя целую галактику и не подавиться, а за пределами горизонта событий привычная нам физика начинает визжать и скручиваться в узел. С другой стороны, черные дыры могут стать потенциальными переходными «норами» из одного узла пространства в другой. Вопрос в том, как близко мы сможем приблизиться к черной дыре, и не будет ли это чревато последствиями?

Сверхмассивная черная дыра Стрелец A*, находящаяся в центре нашей галактики, не только всасывает находящиеся поблизости объекты, но и выбрасывает мощное радиоизлучение. Ученые давно пытались разглядеть эти лучи, но им мешал рассеянный свет, окружающий дыру. Наконец, они смогли пробиться сквозь световой шум при помощи 13 телескопов, которые объединились в единую мощную систему. Впоследствии ими были открыты интересные сведения о ранее таинственных лучах.

Несколько дней назад, 14 марта, этот мир покинул один из самых выдающихся физиков современности,

Такое название она получила из-за того, что поглощает свет, но не отражает его как другие объекты. На самом деле фактов про черные дыры существует множество, и о некоторых самых интересных мы сегодня расскажем. До относительно недавнего времени считалось, что черная дыра в космосе всасывает в себя все, что рядом с ней находится или пролетает: планеты мусор, но, недавно ученые стали утверждать - содержимое через некоторое время «выплевывается» обратно, только совершенно в другом виде. Если вас интересуют черные дыры в космосе интересные факты о них мы сегодня расскажем подробнее.

Существует ли угроза для Земли?

Есть две черные дыры, которые могут представлять реальную угрозу нашей планете, но находятся они, к счастью, для нас далеко на расстоянии примерно 1600 световых лет. Ученые смогли обнаружить эти объекты только потому, что находились они вблизи Солнечной Системы и специальные приборы, улавливающие рентгеновские лучи, смогли их увидеть. Есть предположение, что огромная сила гравитации способна повлиять на черные дыры таким образом, что они сольются в одну.

Вряд ли кто-то из современников сможет застать тот момент, когда эти таинственные объекты исчезнут. Настолько медленно происходит процесс гибели дыр.

Черная дыра - это звезда в прошлом

Как образуются черные дыры в космосе ? Звезды имеют внушительный запас термоядерного топлива, из-за чего они и светятся так ярко. Но все ресурсы заканчиваются, и звезда охлаждается, постепенно теряя свое свечение и превращаясь в черного карлика. Известно, что в остывшей звезде происходит процесс сжатия, в итоге она взрывается, а ее частицы разлетаются на огромные расстояния в космосе, притягивая соседние объекты, тем самым увеличивая размер черной дыры.

Самое интересное про черные дыры в космосе нам еще предстоит изучить, но удивительно, плотность ее, несмотря на внушительные размеры, может равняться плотности воздуха. Это говорит о том, что даже самые крупные объекты космоса могут иметь такой же вес, как воздух, то есть быть невероятно легкими. Вот как появляются черные дыры в космосе .

Время в самой черной дыре и возле течет очень медленно, поэтому объекты, пролетающие рядом замедляют свое движение. Причиной всему огромная сила гравитации, еще более удивительный факт, все процессы, происходящие в самой дыре, имеют невероятную скорость. Допустим, если наблюдать за тем как выглядит черная дыра в космосе , находясь за границами всепоглощающей массы, кажется, что все стоит на месте. Однако стоит только попасть внутрь объекту, его в мгновение бы разорвало. Сегодня нам показывают, как выглядит черная дыра в космосе фото , смоделированное специальными программами.

Определение черной дыры?

Теперь мы знаем откуда берутся черные дыры в космосе . Но что в них еще особенного? Сказать, что черная дыра - это планета или звезда невозможно априори, потому что это тело не газовое и не твердое. Это объект, который способен искажать не только ширину, длину и высоту, но и временную шкалу. Что совершенно не поддается физическим законам. Ученые утверждают, что время в районе горизонта пространственной единицы может двигаться вперед и назад. Что находится в черной дыре в космосе невозможно себе представить, световые кванты, попадающие туда, умножаются в несколько раз на массу сингулярности, этот процесс увеличивает мощь гравитационной силы. Поэтому, если взять с собой фонарик и отправиться черную дыру, светиться он не будет. Сингулярность - точка, в которой все стремится к бесконечности.

Структура черной дыры - это сингулярность и горизонт событий. Внутри сингулярности физические теории полностью теряют свой смысл, поэтому до сих пор она остается загадкой для ученых. Пересекая границу (горизонт событий), физический объект теряет возможность вернуться. Мы знаем далеко не все о черных дырах в космосе , но интерес к ним не угасает.

Каждый человек, знакомящийся с астрономией, рано или поздно испытывает сильное любопытство по поводу самых загадочных объектов Вселенной - черных дыр. Это настоящие властелины мрака, способные «проглотить» любой проходящий поблизости атом и не дать ускользнуть даже свету, - настолько мощно их притяжение. Эти объекты представляют настоящую проблему для физиков и астрономов. Первые пока еще не могут понять, что же происходит с упавшим внутрь черной дыры веществом, а вторые хоть и объясняют самые энергозатратные явления космоса существованием черных дыр, никогда не имели возможности наблюдать ни одну из них непосредственно. Мы расскажем об этих интереснейших небесных объектах, выясним, что уже было открыто и что еще предстоит узнать, чтобы приподнять завесу тайны.

Что такое черная дыра?

Название «черная дыра» (по-английски - black hole) было предложено в 1967 году американским физиком-теоретиком Джоном Арчибальдом Уилером (см. фото слева). Оно служило для обозначения небесного тела, притяжение которого настолько сильно, что не отпускает от себя даже свет. Потому она и «черная», что не испускает света.

Косвенные наблюдения

В этом кроется причина такой таинственности: поскольку черные дыры не светятся, мы не можем увидеть их непосредственно и вынуждены искать и изучать их, используя лишь косвенные свидетельства, которые их существование оставляет в окружающем пространстве. Иными словами, если черная дыра поглощает звезду, мы не видим черную дыру, но можем наблюдать разрушительные последствия воздействия ее мощного гравитационного поля.

Интуиция Лапласа

Несмотря на то, что выражение «черная дыра» для обозначения гипотетической финальной стадии эволюции звезды, сколлапсировавшей в себя под воздействием силы тяжести, появилось сравнительно недавно, идея о возможности существования таких тел возникла более двух веков назад. Англичанин Джон Мичелл и француз Пьер-Симон де Лаплас независимо друг от друга выдвинули гипотезу о существовании «невидимых звезд»; при этом они основывались на обычных законах динамики и законе всемирного тяготения Ньютона. Сегодня черные дыры получили свое правильное описание на основе общей теории относительности Эйнштейна.

В своем труде «Изложение системы мира» (1796) Лаплас писал: «Яркая звезда той же плотности, что и Земля, диаметром, в 250 раз превосходящим диаметр Солнца, благодаря своему гравитационному притяжению не позволила бы световым лучам добраться до нас. Следовательно, возможно, что самые крупные и самые яркие небесные тела по этой причине являются невидимыми».

Непобедимое тяготение

В основе идеи Лапласа лежало понятие скорости убегания (второй космической скорости). Черная дыра является настолько плотным объектом, что ее притяжение способно задержать даже свет, развивающий наибольшую в природе скорость (почти 300000 км/с). На практике, для того чтобы убежать из черной дыры, требуется скорость выше скорости света, но это невозможно!

Это означает, что звезда такого рода будет невидимой, поскольку даже свету не удастся преодолеть ее мощную гравитацию. Эйнштейн объяснял этот факт через явление отклонения света под воздействием гравитационного поля. В реальности вблизи черной дыры пространство-время настолько искривлено, что траектории световых лучей также замыкаются на самих себе. Для того чтобы превратить Солнце в черную дыру, мы должны будем сосредоточить всю его массу в шаре радиусом 3 км, а Земля должна будет превратиться в шарик радиусом 9 мм!

Виды черных дыр

Еще около десяти лет назад наблюдения позволяли предположить существование двух видов черных дыр: звездных, масса которых сравнима с массой Солнца или ненамного превышает ее, и сверхмассивных, масса которых - от нескольких сотен тысяч до многих миллионов масс Солнца. Однако относительно недавно рентгеновские изображения и спектры высокого разрешения, полученные с искусственных спутников типа «Чандра» и «ХММ-Ньютон», вывели на авансцену третий тип черной дыры -с массой средней величины, превосходящей массу Солнца в тысячи раз.

Звездные черные дыры

Звездные черные дыры стали известны раньше других. Они формируются тогда, когда звезда большой массы в конце своего эволюционного пути исчерпывает запасы ядерного горючего и коллапсирует сама в себя из-за собственной гравитации. Потрясающий звезду взрыв (это явление известно под названием «взрыва сверхновой») имеет катастрофические последствия: если ядро звезды превосходит массу Солнца более чем в 10 раз, никакая ядерная сила не способна противостоять гравитационному коллапсу, результатом которого будет появление черной дыры.

Сверхмассивные черные дыры

Иное происхождение имеют сверхмассивные черные дыры, впервые отмеченные в ядрах некоторых активных галактик. Относительно их рождения есть несколько гипотез: звездная черная дыра, которая в течение миллионов лет пожирает все окружающие ее звезды; слившееся воедино скопление черных дыр; колоссальное газовое облако, коллапсирующее непосредственно в черную дыру. Эти черные дыры являются одними из самых насыщенных энергией объектов космоса. Они расположены в центрах очень многих галактик, если не всех. Наша Галактика тоже имеет такую черную дыру. Иногда благодаря наличию такой черной дыры ядра этих галактик становятся очень яркими. Галактики с черными дырами в центре, окруженными большим количеством падающего вещества и, следовательно, способными произвести колоссальное количество энергии, называются «активными», а их ядра -«активными ядрами галактик» (AGN). Например, квазары (самые удаленные от нас космические объекты, доступные нашему наблюдению) являются активными галактиками, у которых мы видим только очень яркое ядро.

Средние и «мини»

Еще одной тайной остаются черные дыры средней массы, которые, согласно недавним исследованиям, могут оказаться в центре некоторых шаровых скоплений, таких, например, как М13 и NCC 6388. Многие астрономы высказываются об этих объектах скептически, но некоторые новейшие исследования позволяют предположить наличие черных дыр средних размеров даже недалеко от центра нашей Галактики. Английский физик Стивен Хокинг выдвинул также теоретическое предположение о существовании четвертого вида черной дыры - «мини-дыры» с массой лишь в миллиард тонн (что примерно равно массе большой горы). Речь идет о первичных объектах, то есть появившихся в первые мгновения жизни Вселенной, когда давление было еще очень высоким. Впрочем, пока не обнаружено ни одного следа их существования.

Как найти черную дыру

Всего несколько лет назад над черными дырами «зажегся свет». Благодаря постоянно совершенствуемым приборам и технологиям (как наземным, так и космическим) эти объекты становятся все менее загадочными; точнее, менее загадочным становится окружающее их пространство. В самом деле, коль скоро сама черная дыра невидима, мы можем распознать ее только в том случае, если она окружена достаточным количеством вещества (звезд и горячего газа), обращающегося вокруг нее на небольшом удалении.

Наблюдая за двойными системами

Некоторые звездные черные дыры были обнаружены в процессе наблюдения орбитального движения звезды вокруг невидимого компаньона по двойной системе. Тесные двойные системы (то есть состоящие из двух очень близких друг к другу звезд), один из компаньонов в которых невидим, - излюбленный объект наблюдений астрофизиков, ищущих черные дыры.

Указанием на наличие черной дыры (или нейтронной звезды) служит сильная эмиссия рентгеновских лучей, вызванная сложным механизмом, который можно схематически описать следующим образом. Благодаря своей мощной гравитации черная дыра может вырывать вещество из звезды-компаньона; этот газ распределяется в форме плоского диска и падает по спирали в черную дыру. Трение, возникающее в результате столкновений частичек падающего газа, нагревает внутренние слои диска до нескольких миллионов градусов, что вызывает мощное излучение рентгеновских лучей.

Наблюдения в рентгеновских лучах

Проводящиеся уже несколько десятилетий наблюдения в рентгеновских лучах объектов нашей Галактики и соседних галактик позволили обнаружить компактные двойные источники, примерно десяток из которых представляет собой системы, содержащие кандидатов в черные дыры. Основной проблемой является определение массы невидимого небесного тела. Значение массы (пусть и не очень точное) можно найти, изучая движение компаньона или, что намного труднее, измеряя интенсивность рентгеновского излучения падающего вещества. Эта интенсивность связана уравнением с массой тела, на которое падает это вещество.

Нобелевский лауреат

Нечто подобное можно сказать и в отношении сверхмассивных черных дыр, наблюдаемых в ядрах многих галактик, массы которых оцениваются через измерение орбитальных скоростей газа, проваливающегося в черную дыру. В этом случае вызванный мощным гравитационным полем очень крупного объекта быстрый рост скорости газовых облаков, обращающихся по орбите в центре галактик, выявляется наблюдениями в радиодиапазоне, а также в оптических лучах. Наблюдения в рентгеновском диапазоне могут подтвердить повышенное выделение энергии, вызванное падением вещества внутрь черной дыры. Исследования в рентгеновских лучах в начале 1960-х годов начал работавший в США итальянец Риккардо Джаккони. Присужденная ему в 2002 году Нобелевская премия стала признанием его «новаторского вклада в астрофизику, что привело к открытию в космосе источников рентгеновского излучения».

Лебедь X-1: первый кандидат

Наша Галактика не застрахована от наличия объектов-кандидатов в черные дыры. К счастью, ни один из этих объектов не находится настолько близко к нам, чтобы представлять опасность для существования Земли или Солнечной системы. Несмотря на большое количество отмеченных компактных источников рентгеновского излучения (а это наиболее вероятные кандидаты для нахождения там черных дыр), у нас нет уверенности в том, что они на самом деле содержат черные дыры. Единственным среди этих источников, не имеющим альтернативной версии, является тесная двойная система Лебедь X-1, то есть наиболее яркий источник рентгеновского излучения, в созвездии Лебедь.

Массивные звезды

Эта система, орбитальный период которой составляет 5,6 суток, состоит из очень яркой голубой звезды большого размера (ее диаметре 20 раз превосходит солнечный, а масса - примерно в 30 раз), легко различимой даже в ваш телескоп, и невидимой второй звезды, масса которой оценивается в несколько солнечных масс (до 10). Расположенная на расстоянии 6500 световых лет от нас вторая звезда была бы отлично видна, если бы она была обычной звездой. Ее невидимость, производимое системой мощное рентгеновское излучение и, наконец, оценка массы заставляют большинство астрономов думать о том, что это - первый подтвержденный случай обнаружения звездной черной дыры.

Сомнения

Впрочем,есть и скептики. Среди них один из крупнейших исследователей черных дыр физик Стивен Хокинг. Он даже заключил пари с американским коллегой Килом Торном - ярым сторонником классификации объекта Лебедь X-1 как черной дыры.

Спор о сущности объекта Лебедь X-1 - не единственное пари Хокинга. Посвятив несколько девятилетий теоретическим исследованиям черных дыр, он убедился в ошибочности своих прежних представлений об этих загадочных объектах.. В частности, Хокинг предполагал, что вещество после падения в черную дыру исчезает навсегда, а с ним исчезает и весь его информационный багаж. Он был настолько в этом уверен, что заключил на эту тему в 1997 году пари с американским коллегой Джоном Прескйллом.

Признание ошибки

21 июля 2004 года в своем выступлении на конгрессе по теории относительности в Дублине Хокинг признал правоту Прескилла. Черные дыры не приводят к полному исчезновению вещества. Более того, они обладают определенного рода «памятью». Внутри них вполне могут храниться следы того, что они поглотили. Таким образом, «испаряясь» (то есть медленно испуская излучение вследствие квантового эффекта), они могут возвращать эту информацию нашей Вселенной.

Черные дыры в Галактике

Астрономы еще питают множество сомнений относительно наличия в нашей Галактике звездных черных дыр (подобных той, что принадлежит двойной системе Лебедь X-1); но в отношении сверхмассивных черных дыр сомнений гораздо меньше.

В центре

В нашей Галактике имеется минимум одна сверхмассивная черная дыра. Ее источник, известный под именем Стрелец А*, точно локализован в центре плоскости Млечного Пути. Его название объясняется тем, что это самый мощный радиоисточник в созвездии Стрелец. Именно в этом направлении расположены как геометрический, так и физический центры нашей галактической системы. Находящаяся на расстоянии около 26000 световых лет от нас сверхмассивная черная дыра, связанная с источником радиоволн Стрелец А*, обладает массой, которая оценивается примерно в 4 млн солнечных масс, заключенных в пространстве, объем которого сравним с объемом Солнечной системы. Ее относительная близость к нам (эта сверхмассивная черная дыра, без сомнения, ближайшая к Земле) стала причиной того, что в последние годы объект подвергся особенно глубокому исследованию при помощи космической обсерватории «Чандра». Выяснилось, в частности, что он также представляет собой мощный источник рентгеновского излучения (но не столь мощный, как источники в активных ядрах галактик). Стрелец А*, возможно, является «спящим» остатком того, что миллионы или миллиарды лет назад было активным ядром нашей Галактики.

Вторая черная дыра?

Впрочем, некоторые астрономы считают, что в нашей Галактике имеется еще один сюрприз. Речь идет а второй черной дыре средней массы, удерживающей вместе скопление молодых звезд и не позволяющей им упасть в сверхмассивную черную дыру, расположенную в центре самой Галактики. Как же может быть, чтобы на расстоянии меньше одного светового года от нее могло находиться звездное скопление возраста, едва достигшего 10 млн лет, то есть, по астрономическим меркам, очень молодое? По мнению исследователей, ответ заключается в том, что скопление родилось не там (среда вокруг центральной черной дыры слишком враждебна для звездообразования), но было «притянуто» туда благодаря существованию внутри него второй черной дыры, которая и обладает массой средних значений.

На орбите

Отдельные звезды скопления, притянутое сверхмассивной черной дырой, начали смещаться в сторону галактического центра. Однако вместо того чтобы рассеяться в космосе, они остаются собранными вместе благодаря притяжению второй черной дыры, расположенной в центре скопления. Масса этой.черной дыры может быть оценена на основании ее способности держать «на поводке» целое звездное скопление. Черная дыра средних размеров, видимо, совершает оборот вокруг центральной черной дыры примерно за 100 лет. Это означает, что продолжительные наблюдения в течение многих лет позволят нам ее «увидеть».

January 24th, 2013

Из всех гипотетических объектов Вселенной, предсказываемых научными теориями, черные дыры производят самое жуткое впечатление. И, хотя предположения об их существовании начали высказываться почти за полтора столетия до публикации Эйнштейном общей теории относительности, убедительные свидетельства реальности их существования получены совсем недавно.

Давайте начнем с того, как общая теория относительности решает вопрос о природе гравитации. Закон всемирного тяготения Ньютона утверждает, что между двумя любыми массивными телами во Вселенной действует сила взаимного притяжения. По причине такого гравитационного притяжения Земля обращается вокруг Солнца. Общая теория относительности заставляет нас взглянуть на систему Солнце—Земля иначе. Согласно этой теории в присутствии столь массивного небесного тела, как Солнце, пространство-время как бы проминается под его тяжестью, и равномерность его ткани нарушается. Представьте себе эластичный батут, на котором лежит тяжелый шар (например, от боулинга). Натянутая ткань прогибается под его весом, создавая вокруг разрежение. Таким же образом Солнце продавливает пространство-время вокруг себя.



Согласно этой картине Земля просто катается вокруг образовавшейся воронки (за исключением того, что маленький шарик, катающийся вокруг тяжелого на батуте неизбежно будет терять скорость и по спирали приближаться к большому). И то, что мы привычно воспринимаем как силу земного притяжения в нашей повседневной жизни, также есть ни что иное, как изменение геометрии пространства-времени, а не сила в ньютоновском понимании. На сегодня более удачного объяснения природы гравитации, чем дает нам общая теория относительности, не придумано.

А теперь представьте, что произойдет, если мы будем — в рамках предложенной картины — увеличивать и увеличивать массу тяжелого шара, не увеличивая при этом его физических размеров? Будучи абсолютно эластичной, воронка будет углубляться до тех пор, пока ее верхние края не сойдутся где-то высоко над совсем потяжелевшим шаром, и тогда он просто перестанет существовать при взгляде с поверхности. В реальной Вселенной, накопив достаточную массу и плотность материи, объект захлопывает вокруг себя пространственно-временную ловушку, ткань пространства-времени смыкается, и он теряет связь с остальной Вселенной, становясь невидимым для нее. Так возникает черная дыра.

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца. Вскоре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть только звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос — существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 30-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5-3 Ms. Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.


09.07.1911 - 13.04.2008

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теоретиков, в том числе и советских. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У неподвижной дыры это точка, у вращающейся — кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967 года американский физик Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Важнейшее свойство черной дыры — что бы в нее ни попало, обратно оно не вернется. Это касается даже света, вот почему черные дыры и получили свое название: тело, поглощающее весь свет, падающий на него, и не испускающее собственного кажется абсолютно черным. Согласно общей теории относительности, если объект приближается к центру черной дыры на критическое расстояние — это расстояние называется радиусом Шварцшильда, — он уже никогда не сможет вернуться назад. (Немецкий астроном Карл Шварцшильд (Karl Schwarzschild, 1873-1916) в последние годы своей жизни, используя уравнения общей теории относительности Эйнштейна, рассчитал гравитационное поле вокруг массы нулевого объема.) Для массы Солнца радиус Шварцшильда составляет 3 км, то есть, чтобы превратить наше Солнце в черную дыру, нужно уплотнить всю его массу до размера небольшого городка!


Внутри радиуса Шварцшильда теория предсказывает явления еще более странные: всё вещество черной дыры собирается в бесконечно малую точку бесконечной плотности в самом ее центре — математики называют такой объект сингулярным возмущением. При бесконечной плотности любая конечная масса материи, математически говоря, занимает нулевой пространственный объем. Происходит ли это явление реально внутри черной дыры, мы, естественно, экспериментально проверить не можем, поскольку всё попавшее внутрь радиуса Шварцшильда обратно не возвращается.

Не имея, таким образом, возможности «рассмотреть» черную дыру в традиционном смысле слова «смотреть», мы, тем не менее, можем обнаружить ее присутствие по косвенным признакам влияния ее сверхмощного и совершенно необычного гравитационного поля на материю вокруг нее.

Сверхмассивные черные дыры

В центре нашего Млечного Пути и других галактик располагается невероятно массивная черная дыра в миллионы раз тяжелее Солнца. Эти сверхмассивные черные дыры (такое название они получили) были обнаружены по наблюдениям за характером движения межзвездного газа вблизи центров галактик. Газы, судя по наблюдениям, вращаются на близком удалении от сверхмассивного объекта, и простые расчеты с использованием законов механики Ньютона показывают, что объект, притягивающий их, при мизерном диаметре обладает чудовищной массой. Так закрутить межзвездный газ в центре галактики может только черная дыра. Фактически астрофизики нашли уже десятки таких массивных черных дыр в центрах соседних с нашей галактик, и сильно подозревают, что центр любой галактики — суть черная дыра.


Черные дыры со звездной массой

Согласно нашим нынешним представлениям об эволюции звезд, когда звезда с массой, превышающей примерно 30 масс Солнца, гибнет со вспышкой сверхновой, внешняя ее оболочка разлетается, а внутренние слои стремительно обрушиваются к центру и образуют черную дыру на месте израсходовавшей запасы топлива звезды. Изолированную в межзвездном пространстве черную дыру такого происхождения выявить практически невозможно, поскольку она находится в разреженном вакууме и никак не проявляет себя в плане гравитационных взаимодействий. Однако, если такая дыра входила в состав двойной звездной системы (две горячих звезды, обращающихся по орбите вокруг их центра масс), черная дыра будет по-прежнему оказывать гравитационное воздействие на парную ей звезду. Астрономы сегодня имеют более десятка кандидатов на роль звездных систем такого рода, хотя строгих доказательств не получено в отношении ни одной из них.

В двойной системе с черной дырой в ее составе вещество «живой» звезды будет неизбежно «перетекать» в направлении черной дыры. И закручиваться высасываемое черной дырой вещество при падении в черную дыру будет по спирали, исчезая при пересечении радиуса Шварцшильда. При подходе к роковой границе, однако, засасываемое в воронку черной дыры вещество будет неизбежно уплотняться и разогреваться в силу учащения соударений между поглощаемыми дырой частицами, пока не разогреется до энергий излучения волн в рентгеновском диапазоне спектра электромагнитного излучения. Астрономы могут измерить периодичность изменения интенсивности рентгеновского излучения такого рода и вычислить, сопоставив ее с другими доступными данными, примерную массу объекта, «перетягивающего» на себя материю. Если масса объекта превышает предел Чандрасекара (1,4 массы Солнца), этот объект не может являться белым карликом, в которого суждено выродиться нашему светилу. В большинстве выявленных случаев наблюдения подобных двойных рентгеновских звезд массивным объектом является нейтронная звезда. Однако насчитано уже более десятка случаев, когда единственным разумным объяснением является присутствие в двойной звездной системе черной дыры.

Все другие типы черных дыр куда более спекулятивны и основаны исключительно на теоретических изысканиях — экспериментальных подтверждений их существования не имеется вовсе. Во-первых, это черные мини-дыры с массой, сопоставимой с массой горы и сжатой до радиуса протона. Идею об их зарождении на начальной стадии формирования Вселенной непосредственно после Большого взрыва высказал английский космолог Стивен Хокинг (см. Скрытый принцип необратимости времени). Хокинг предположил, что взрывами мини-дыр можно объяснить действительно загадочный феномен точеных вспышек гамма-излучения во Вселенной. Во-вторых, некоторые теории элементарных частиц предсказывают существование во Вселенной — на микро-уровне — настоящего решета из черных дыр, представляющих собой своего рода пену из отбросов мироздания. Диаметр таких микро-дыр предположительно составляет около 10-33 см — они в миллиарды раз мельче протона. На данный момент у нас нет каких-либо надежд на экспериментальную проверку даже самого факта существования таких черных дыр-частиц, не говоря уже о том, чтобы хоть как-то исследовать их свойства.


А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.

А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик - звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.

Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый — черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй — сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений.


Сверхмассивная черная дыра (окрестности) в центре галактики M87 (рентгеновское изображение). Виден выброс (джет) от горизонта событий. Изображение с сайта www.college.ru/astronomy

Поиск скрытых черных дыр — одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения — приблизительно 2000-20 000 электрон-вольт (для сравнения, энергия оптического излучения — около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000-300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» — первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.

Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это — серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет, так как хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.

Некоторые черные дыры считаются более активными, чем их спокойные соседи. Активные черные дыры поглощают окружающее вещество, а если в полет тяготения попадет «зазевавшаяся» звезда, пролетающая мимо, то она непременно будет «съедена» самым варварским способом (разорванная в клочья). Поглощаемое вещество, падая на черную дыру, нагревается до огромных температур, и испытывает вспышку в гамма, рентгеновском и ультрафиолетовом диапазоне. В центре Млечного Пути так же находится сверхмассивная черная дыра, но ее труднее изучать, чем дыры в соседних или даже далеких галактиках. Это связано с плотной стеной газа и пыли, встающей на пути центру Нашей Галактики, ведь Солнечная система находится почти на краю галактического диска. Поэтому наблюдения активности черных дыр гораздо эффективней у тех галактик, ядро которых хорошо просматривается. При наблюдении одной из далеких галактик, расположенной в созвездии Волопаса на расстоянии 4-х миллиардов световых лет, астрономам впервые удалось отследить от начала и почти до конца процесс поглощения звезды супермассивной черной дырой. В течение тысяч лет этот гигантский коллапсар тихо-мирно покоился в центре безымянной эллиптической галактики, пока одна из звезд не осмелилась приблизиться к ней достаточно близко.

Мощная гравитация черной дыры разорвала звезду на части. Сгустки вещества начали падать на черную дыру и при достижении горизонта событий, ярко вспыхивать в ультрафиолетовом диапазоне. Эти вспышки и зафиксировал новый космический телескоп NASA Galaxy Evolution Explorer, изучающий небо в ультрафиолете. Телескоп и сегодня продолжает наблюдать за поведением отличившегося объекта, т.к. трапеза черной дыры еще не закончилась, а остатки звезды продолжают падать в бездну времени и пространства. Наблюдения таких процессов, в конце концов, помогут лучше понять, как черные дыры развиваются вместе с их родительскими галактиками (или, наоборот, галактики развиваются с родительской черной дырой). Более ранние наблюдения показывают, что подобные эксцессы не редкость во Вселенной. Ученые подсчитали, что в среднем звезда поглощается сверхмассивной черной дырой типичной галактики один раз в 10000 лет, но поскольку галактик большое количество, то наблюдать поглощения звезд можно гораздо чаще.


источник



Поделиться