Термокабель пожарный извещатель. Линейный тепловой пожарный извещатель

В виду наращивания производства с применением дорогостоящего оборудования и увеличения численности технологического персонала на предприятиях нередко приходится заботиться о безопасности людей и технологического оборудования. В настоящее время в связи с ужесточением правил устройства систем безопасности нередко приходится задумываться о применении того или иного рода систем.

В данной статье будет рассматриваться инновационное решение в области обеспечения пожарной безопасности - устройство, представленное в виде кабеля.

Линейный пожарный извещатель, другое название термокабель - устройство способное обнаруживать изменение температуры, на участке котором он проложен, в случаях где невозможно установить другого рода пожарные извещатели.

Линейный пожарный извещатель представляет собой пару проводников изолированных между собой термочувствительной изоляцией, облочённых в дополнительный защитный изоляционный слой.

Принцип действия.

Принцип действия заключается в следующем при появлении возгорания или перегреве на участке, где применяется термокабель, происходит нарушение изоляционного слоя каждого проводника под действием пороговой температуры, при этом происходит замыкание проводников на отдельном или нескольких участках. Контрольный прибор принимает решение о изменении состояния на контрольном объекте.

Классификация термокабеля по типам применяемой внешней изоляции,

что в значительной мере влияет на применение извещателя в конкретных условиях окружающей среды:

  • Термокабель типа EPC, изоляция которого считается наиболее универсальной изоляцией выполненной из ПВХ материала, что позволяет применять её в промышленном и гражданском строительстве. Оболочка обеспечивает хорошую гибкость при прокладке кабеля при пониженных температурах. При этом обеспечивается надлежайшая огнестойкость и влагостойкость.
  • Термокабель типа EPR имеет полипропиленовую внешнюю оболочку значительно увеличивает огнестойкость и не распространяет влияния ультрафиолетового излучения окружающей среды. Как правило используется в средах с агрессивными химическими веществами, не подвержен истиранию. При этом надёжно функционирует в условиях повышенных температур окружающей среды.
  • Термокабель типа XLT, изоляция которого представляет собой изоляционный материал из полимера наивысшим образом способного противостоять экстремально низким температурам. основное предназначение такого рода изоляции применение извещателя на открытых площадках, в условия крайнего Севера, в холодильных и морозильных камерах.
  • Термокабель типа TRI имеет схожую по свойствам изоляцию типа EPC, но единственное уникальное отличие от остальных кабелей кабель TRI (TRI-Wire) способен выдавать два сигнала "Предтревога" и "Пожар", в зависимости от установки.
  • Термокабель типа XCR в буквальном смысле слова включает в себя все вышеприведённые типы оболочек. Высококачественная фторополимерная оболочка, специально разработанная для объектов специального назначения, с пониженным дымовыделением и газообразованием, механически стойкий на истирание, с высокой стойкостью к пониженным температурам. Также как и оболочка EPR стойко переносит агрессивные воздействия химически активных веществ и ультрафиолетового воздействия. А возможность использования при пониженных температурах позволяет произвести сходство с извещателем типа XLT. Качество оболочки позволяет подчеркнуть универсальность применяемого материала изоляции.

Классификацию термокабеля по условиям эксплуатации

рассмотрим на ниже следующем рисунке, что наглядно продемонстрирует способность применения той или иной изоляции в различных условиях окружающей среды.

Классификация термокабеля по температурным режимам.

На рисунке можно увидеть модель кабеля и соответствующее ей температуру срабатывания, в диапазоне рабочих температур.

Преимущество использования линейного пожарного извещателя:

Термокакабель обладает повышенной чувствительностью на температурные изменения на всей своей длине;

Наличие нескольких температурных режимов работы, обусловленных изготовлением устройств различного типа изготовления;

Устойчивость к окружающим условиям окружающей среды;

Высокая устойчивость к низким температурным режимам окружающей среды;

Низкая стоимость и простые решения по монтажу системы, сниженная стоимость эксплуатационных затрат.

Принципы построения системы:

Работа основана на принципе работы с нормально-разомкнутыми контактами, поэтому устройство контроля должны обладать особенностью контроля замыкания шлейфа связи$

Необходимо принимать во внимание то, что при выборе данного извещателя необходимо учитывать его внутренне сопротивление, обусловленное длинной термокабеля, 1 Ом на 1,5 м, что в последствии может повлиять на протяженность линии термокабеля на заданном участке;

При выборе данной системы на охраняемом участке стоит руководствоваться расчётом возможного сопротивления термокабеля и равномерно распределять общую длину на участке на несколько равномерных участков, в противном случае участок кабеля длинною более 2000 м может привести к ложному срабатыванию системы;

Монтаж необходимо производить цельным участком, не допуская разветвлений, производить разделения на зоны, которые обусловлены определение источника пожара в том или ином месте;

При планировании прокладки кабеля учитывать нормы и требования к прокладке кабеля.

Далее будут рассматриваться монтажные устройства, которые применяются в системах охранно-пожарной сигнализации с применением линейного пожарного извещателя, на основе оборудования поставляемой компанией Рrotectowire, одобренной ВНИИПО МЧС России.

Монтажные компоненты.

Монтажная зонная коробка ZB-4-QC-MP герметичного соединения линейного извещателя и шлейфа связи. Исполнение коробки позволяет обеспечить надёжную защиту соединительного узла от внешних воздействий окружающей среды, способствует обеспечению качественного соединения в широких диапазонах рабочих температур.

Пример применения рассмотренный ниже на рисунке показывает, что контактные соединители заключённые внутри коробки при таком использовании позволяют достойно обеспечивать соединение термокабеля и шлейфа связи, а также дополнительного сопротивления, обеспечивая его целостность.

Обжимная муфта SR-502

основное её назначение - обеспечениегерметизации ввода кабеля в монтажную зонную коробку ZB-4-QC-MP. Наборная муфта из стальных элементов и уплотнительных колец, позволяет получит надежное герметичное соединение с кабелем и коробкой, при этом не повреждая термочувствительную оболочку жил кабеля.

Крепёжные устройства.

Разработанные для быстрого, надёжного и в тоже время безопасного монтажа монтажные элементы позволяют постепенно в процессе протягивания закреплять кабель, при этом обеспечивая целостность термокабеля.

Представляемые ниже крепёжные элементы позволяют без дополнительного растягивания и сдавливания изоляции кабеля производить монтаж.

WAW зажим

внешний вид устройства позволяетгарантироватьпростое и надёжное крепления извещателя-кабеля к поверхностям, по которым он будет проложен. Принцип использования заключается в том что во внутрь зажима, материал которого в зависимости от условий прокладки может применятся двух типов, помещается кабель и без давления на внешнюю оболочку происходит его зажим.

По типу применяемого материала зажим может быть двух типов из нейлона (WAW-N) и из полипропилена (WAW-P). Полипропиленовые зажимы применимы при использовании в средах с высокой температурой, а нейлоновые в низкотемпературных средах до -40°C, и +88°C соответственно для полипропилена.

Особенностей монтажа на прямых участках нет, а вот в углах имеет место быть смещение точки установки крепежа внутрь изгиба кабеля на 1,3-2 см от пересечения линий кабеля, после закрепления на прямых участках.

Также для прямых участков применимы и более примитивные крепления типа OHS.

Линейные зажимы OHS

применяются для крепления линейного пожарного извещателя на прямых участках, как рекомендуется производителем, между зажимами типа WAW, при этом обеспечивая основную поддержку извещателя.

Зажим типа OHS-1 выполняется из оцинкованной стали, что обосновывает его использование для использования внутри помещения, а зажим типа OHS-1/4-SS выполнен из стали, что обосновывает его использование для использования на наружных установках.

Фиксация зажима производится по сути любым крепёжным изделием (болт, шуруп, шпилька и т.д.).

Рассмотренные монтажные крепежи позволяют производить крепление термокабеля на плоскости, но как правило при монтажных работах не всегда есть возможность произвести работы только на плоскости, или нет возможности установить на ней зажим, приходится местами подвешивать извещатель к строительным конструкция, где не получится производить крепление по тем или иным соображения, рассмотренными ранее методами, прибегают к использованию зажимов, которые без дополнительного нарушения целосности строительной позволит произвести прокладку кабеля.

Комплект зажимов серии BC

применяются для прокладки извещателя к строительным конструкциям, без нарушения её целостности, и разумного использования трудозатрат и времени монтажа. Находят применения при монтаже термокабеля на кабелегонах, организованных в лотках, по металлоконструкциям, фахферковым элементам конструкции и т.п.

Принцип крепления заключается в том что зажим типа BC закрепляется к конструкции, а уже к нему производится крепление термокабеля через зажим типа WAW.

По месту использования зажима различаются два типа зажимов.

Зажим BC-2, материал сталь, применяется для прокладки термокабеля внутри помещений.

Зажим BC-3, оцинкованная сталь, применяется для монтажа термокабеля на наружных конструкциях.

Монтажный комплект клеевого типа

в случаях где не допустимо произвести механическое крепление, а температурные условия и условия окружающей среды позволяют без особых требований к материалу используется крепёж состоящий из монтажной площадки и кабельной стяжки, который приклеивается, на специализированный, промышленный клей, что обеспечивает скорость монтажа и простоту работ.

Для обеспечения смещения термокабеля относительно точки крепления используется L-образная крепежная скоба RMC . L -образный держатель, на конце которого зажим WAW или кнопочная защёлка имеет пять отверстий для регулирования расстояния смещения. Также как и все рассмотренные ранее элементы крепежа данный держатель выполняется либо из листовой стали, либо нержавеющей стали, что обеспечивает его возможность применения как внутри, так и снаружи помещения.

Монтажные зажимы CC-2.

Представляют собой составную систему крепёжных элементов, которая позволяет быстро и удобно произвести монтаж линейного пожарного извещателя вдоль кабельного лотка с непосредственным креплением к лотку. Типовой зажим "Caddy" имеет специфический изгиб на одном из краёв, который позволяет при зацепиться за край кабельного лотка и надёжно удерживать его при навешивание на другой из его краёв термокабеля, закрепленного по средствам крепежа с защёлкой или зажима типа WAW.

Производитель для этих целей выпускает две модификации зажимов для лотка толщиной 1,6-4,0 мм и лотка толщиной 4,0-6,0 мм, модели CC-2N и CC-2W соответственно.

При использовании другого зажима типа "Caddy" имеется возможность таким же образом производить крепление к более толстым элементам кабельного лотка.

Монтажные зажимы CC-10.

Схожие по принципу работы с зажимами типа CC-2. Дополнительно ко всему ранее сказанному данный тип зажима имеет возможности дополнительного механического воздействия для крепления зажима к лотку, при использовании болтового соединения, в таком случае зажим рекомендуется для монтажа линейного пожарного извещателя в местах подверженных вибрации.

Модификации крепежа представлены двумя видами:

CC-10N применяются для лотков толщиной стенки 3,2 - 6,4 мм;

CC-10W применяются для лотков толщиной стенки 7,9 - 12,7 мм.

Менее сложный, но также функциональный способ крепления термокабеля может быть возможен при наличии таких изделий.

Монтажный зажим HPC-2.

Стойкий к УФ излучению окружающей среды и имеющий скобу, которая позволяет произвести зацеп замка крепления к материалу толщиной 1,5 - 6,4 мм, данный зажим позволит без дополнительных трудозатрат произвести монтаж линейного пожарного извещателя. Термокабель вкладывается в зажим, который крепится на соответствующую назначению конструкцию. Материал - нейлон.

Таким же простым методом крепления возможно произвести монтаж термокабеля с использованием хомутов.

Хомуты PM-3.

При прокладки линейного пожарного извещателя вдоль спринклерных систем пожаротушения, требовалось решение задачи подвеса термокабеля к трубной магистрали, для чего и были внедрены такие хотуты.

Система хомут в хомуте позволяет одним хомутом произвести крепления самого крепёжного элемента, а вторым притягивается термокабель, при этом нет контакта извещателя с трубой, а самое главное не перетягивается место обжатия кабеля, при этом не нарушается внутренний изоляционный слой жил.

Нейлоновые хомуты эксплуатируются при температурах от -40 °C и до +85 °C, при этом температура монтажа недолжна быть ниже 0 °C.

Всё вышеописанное тем или иным образом относитится к одному способу монтажа. Далее будем рассматривать способ прокладки на струне при использовании несущего троса.

Н есущий тр ос.

Эксклюзивный способ поставки линейного пожарного извещателя заключается в том что несущий трос уже интегрирован в извещатель. Нити из нержавеющей стали располагаются непосредственно под одной внешней оплёткой. Кабель обвивает нити с периодом в 0,3 м. Жилы придают кабелю дополнительную жёсткость, что позволит применять его в местах где нет возможности произвести крепления обычным способом.

Способ монтажа предельно понятный, заключается в том, что концы на прямом участке пожарного извещателя крепят к неподвижным частям или проушинам и при помощи талрепа производят натяжку.

Длинна такого участка не должна превысить 76 м, в противном случае возможен обрыв кабеля.

Также для предотвращения обрыва термокабеля на протяжении участка использования линейного пожарного извещателя устанавливают поддерживающие элементы. Частота применения таких элементов определяется условиями эксплуатации, что показывает практика при наружном использовании рекомендовано чаще применять элемент, дабы обеспечить поддержку и распределение нагрузки, от наледи, снеговую нагрузку на всю протяжённость термокабеля.

Дымовые линейные извещатели широко используются в системах пожарной безопасности. Они незаменимы для защиты объектов с протяженными зонами и со сложными условиями эксплуатации. К таким объектам можно отнести производственные цеха, склады, ангары, тоннели, музеи, церкви, театры, спортивные залы, и пр., где установка точечных извещателей сложна, а порой даже невозможна.

Отмечается более раннее обнаружение возгорания линейным извещателем по сравнению с точечными дымовыми извещателями в реальных условиях. В данной статье рассматриваются принцип действия линейных извещателей, варианты их конструкции, приводится оценка эффективности линейных извещателей в сравнении с точечными дымовыми извещателями.

Принцип работы и варианты конструкции линейного извещателя

На рис. 1 изображена простейшая модель дымового линейного извещателя, позволяющая понять принцип его работы. Извещатель состоит из приемника и передатчика, как правило, инфракрасного сигнала, которые размещаются на противоположных сторонах защищаемой зоны, под потолком. Инфракрасный диапазон спектра используется обычно для снижения влияния естественного и искусственного освещения, а для снижения токопотребления применяются импульсные сигналы с большой скважностью. Стабильный по уровню сигнал передатчика фиксируется приемником. В случае возникновения возгорания, дым с нагретым при тлении материалов воздухом поднимается к потолку и "растекается" по нему, постепенно увеличивая заполненную им площадь. Прохождение сигналов передатчика через задымленную среду сопровождается их затуханием. В приемнике вычисляется отношение уровня текущей величины сигнала к уровню сигнала, соответствующего оптически прозрачной среде. Как только отношение достигает установленного порога, формируется сигнал ПОЖАР, который по шлейфу транслируется на приемно-контрольный прибор (ПКП).

На сегодняшний день существует два основных варианта конструкции линейных извещателей: двухкомпонентные, состоящие из отдельных блоков приемника и передатчика, и современные однокомпонентные - один блок приемо-передатчика с пассивным рефлектором. Выше был описан принцип работы двухкомпонентного извещателя. Принцип работы однокомпонентного линейного извещателя отличается от двухкомпонентного только тем, что импульсный сигнал проходит контролируемую зону два раза: от приемопередатчика до рефлектора и обратно.

Построение линейного извещателя определяет требования к техническим характеристикам компонентов, их конструкции и размещению. Для двухкомпонентного извещателя необходимо обеспечить стабильный уровень сигнала передатчика во всем диапазоне рабочих температур и напряжений питания, т.к. снижение уровня сигнала передатчика приводит к формированию ложного сигнала ПОЖАР. Приемник должен обеспечивать хранение значения уровня опорного сигнала и корректировку порога срабатывания при запылении оптики в процессе эксплуатации.

Кроме того, для увеличения энергетического потенциала в приемнике и передатчике используются оптические системы, обеспечивающие достаточно узкие диаграммы направленности. Такое построение определяет сложность настройки и эксплуатации линейных извещателей. Для обеспечения работоспособности необходимо проведение достаточно трудоемкой юстировки, при которой устанавливается положение приемника и передатчика, соответствующее приему максимума сигнала. Изменение положения приемника или передатчика в процессе эксплуатации вызывает отклонение диаграммы направленности, снижение уровня сигнала и формирование ложного сигнала ПОЖАР, который не сбрасывается без переюстировки извещателя. После сброса производится сравнение пониженного за счет разъюстировки уровня сигнала с уровнем сигнала при чистой оптической среде и выдается подтверждение сигнала ПОЖАР. Ситуация для извещателя не отличается от подтверждения сигнала ПОЖАР при наличии дыма. Соответственно, крепление приемника и передатчика допускается только на капитальные конструкции. Форму диаграммы направленности выбирают таким образом, чтобы незначительное смещение опорных конструкций не нарушало работоспособность линейного извещателя. Обычно допускается в процессе эксплуатации смещение максимума диаграммы направленности относительно оптической оси в пределах порядка ±0,5°, что соответствует при расстоянии между приемником и передатчиком 10 метров смещению луча на ±87 мм, а при расстоянии 100 метров - на ±870 мм.

Для обеспечения работы двухкомпонентных извещателей при различных дальностях обычно требуется использование нескольких уровней сигнала передатчика и регулировка усиления приемника, что создает дополнительные трудности при настройке и юстировке. Другой существенный недостаток - необходимость подключения и передатчика, и приемника к источнику питания - это значительный расход кабеля, обычно превышающий расстояние между приемником и передатчиком. Кроме того, при установке в одном помещении параллельно нескольких линейных извещателей необходимо исключить попадание на приемник сигналов от соседних передатчиков. Некоторые производители в этом случае рекомендуют устанавливать приемники и передатчики в шахматном порядке, что приводит к дополнительному увеличению расхода кабеля и монтажных работ. Причем монтаж этой части шлейфа обычно затруднен из-за высоких потолков, или из-за необходимости выполнения скрытой проводки.

Практически все эти недостатки отсутствуют у однокомпонентных дымовых линейных извещателей (рис. 2). Пассивный рефлектор состоит из большого числа призм, структура которых обеспечивает отражение сигнала в направлении источника. Таким образом, рефлектор не требует питания и юстировки. Соответственно в несколько раз сокращается расход кабеля, трудоемкость монтажа и юстировки. Более того, рефлектор может быть установлен на некапитальные и даже вибрирующие конструкции. У современных линейных извещателей допускается изменение положения рефлектора в пределах ±10°. При больших углах появляется снижение уровня отраженного сигнала за счет уменьшения проекции рефлектора на плоскость перпендикулярную оптической оси, т.е. за счет уменьшения эквивалентной площади рефлектора.

Размещение приемника и передатчика в одном блоке обеспечивает возможность автоматического выбора диапазона измерения уровня сигнала при юстировке, автоматическую подстройку уровня излучения передатчика и коэффициента усиления приемника в зависимости от дальности контролируемой зоны.

Кроме того, дополнительно появляется возможность временной селекции сигналов, возможность использования одного рефлектора при близком расположении двух-трех извещателей, возможность компенсации изменения оптической плотности, не связанной с возникновением пожароопасной ситуации, в течение суток для исключения ложных срабатываний и т.д.

Чувствительность линейного извещателя и ее контроль

Чувствительность линейного извещателя определяется аналогично оптическому точечному, но характеризуется значением оптической плотности среды для установленной максимальной дальности, при которой извещатель срабатывает. Требования к таким извещателям определены в НПБ 82-99 «Извещатели пожарные дымовые оптико-электронные линейные. Общие технические требования. Методы испытаний». Согласно указанным НПБ, чувствительность извещателя должна находиться в пределах от 0,4 дБ (снижение интенсивности луча на 9%) до 5,2 дБ (снижение интенсивности луча на 70%). В технической документации может указываться чувствительность в дБ или в процентах. Снижению сигнала на ∆% соответствует ослабление на L дБ:

L = 10lg дБ (1)

В таблице 1 приведен пример расчета по формуле (1).

Таблица 1

%

дБ

Современные линейные извещатели имеют несколько порогов чувствительности и компенсацию запыления оптики, что позволяет учесть условия эксплуатации, исключить ложные срабатывания и снизить расходы на техническое обслуживание.

Рис.3 Компенсация запыления оптической системы

Рис.4 Адаптивный порог

Рис.5 Пример тестового аттенюатора

Рис.6 Затенение рефлектора

При достижении границы диапазона автоматической компенсации современные извещатели формируют отдельный сигнал "Обслуживание", указывающий на необходимость проведения технического обслуживания (см. рис. 3).

В наше время встречаются линейные извещатели без автокомпенсации запыления оптических систем. По мере их загрязнения будет повышаться чувствительность такого извещателя, соответственно появятся ложные срабатывания, исключение которых потребует частых чисток оптики. Увеличение объема технического обслуживания при установке таких линейных извещателей на значительной высоте может достаточно быстро скомпенсировать выигрыш на стоимости оборудования.

Линейные извещатели последнего поколения для исключения ложных срабатываний, вызванных увеличением оптической плотности в контролируемом помещении в рабочие часы, имеют так называемые адаптивные пороги (см. рис. 4). В отличии от фиксированного порога в этом случае медленные изменения оптической плотности среды в течении суток компенсируются в заданных пределах. В широко известном линейном извещателе 6500 кроме четырех фиксированных уровней чувствительности 25%, 30%, 40%, 50% затухания имеются два адаптивных уровня 30% - 50% и 40% - 50%. При установке адаптивного порога, например, 30% - 50% реально чувствительность будет поддерживаться на уровне 30% и не потребуется ее загрублять до 50% для исключения ложных срабатываний в рабочие часы.

Линейный извещатель реагирует на затухание излучения, которое можно имитировать, установив перед оптической системой передатчика или приемника фильтр (аттенюатор) с определенной величиной прозрачности. Такой фильтр обычно имеет периодическую структуру, например, в виде точек на прозрачном материале, или в виде отверстий в непрозрачном материале, диаметр которых значительно меньше размеров оптической системы приемника и передатчика (рис. 5). Отношение непрозрачной площади фильтра к общей площади определяет процент вносимого затухания.

Для контроля чувствительности двухкомпонентного линейного извещателя достаточно иметь по два фильтра на каждый уровень чувствительности. Например, для контроля порога срабатывания 30% можно использовать два фильтра с затуханием 25% и 35%. Эти фильтры являются простейшими устройствами и обычно входят в комплект высококачественных линейных извещателей западного производства. Эти оптические фильтры обеспечивают полную проверку работоспособности линейного извещателя в процессе эксплуатации. Причем можно проконтролировать отсутствие изменения чувствительности при изменении температуры или при загрязнении оптики.

Для тестирования однокомпонентного извещателя также можно использовать оптические фильтры соответствующих размеров, устанавливая их перед приемопередатчиком или перед рефлектором. Однако в однокомпонентном линейном извещателе проще вводить ослабление сигнала путем "затенения" определенной площади рефлектора (рис. 6). Для случая равномерного облучения рефлектора имеется простая зависимость затухания сигнала от величины его площади. Такой способ контроля чувствительности реализован в однокомпонентном извещателе 6500. На его рефлекторе нанесена шкала от 10% до 65% с дискретом 5%, по которой определяется величина затухания сигнала при изменении площади затенения. Таким образом, можно с высокой точностью измерить чувствительность извещателя 6500 на любом из четырех порогов 25%, 30%, 40%, 50% (1.25 дБ, 1.55 дБ, 2.22 дБ, 3.01 дБ) без использования фильтров.

Часто возникает вопрос: почему для имитации затухания сигнала на 30% необходимо закрывать более половины площади рефлектора, а для 50% - примерно 3/4 площади? Ошибки здесь нет, так как в однокомпонентном линейном извещателе, в отличии от двухкомпонентного извещателя, сигнал проходит контролируемую зону два раза: от приемопередатчика до рефлектора и обратно. Соответственно, при реальном задымлении ослабляющем сигнал на 3 дБ (на 50%), к приемо-передатчику вернется сигнал ослабленный на 6 дБ (на 75%). Простой расчет для рефлектора без шкалы, например, уровень установленной чувствительности 30%, при ослаблении сигнала на 30% до рефлектора дойдет 70% сигнала, т.е. 0,7 от первоначального уровня, и на обратном пути тоже останется 0,7 от отраженного от рефлектора, а всего вернется 0,7х0,7=0,49 или 49%, затухание составит 1-0,49=0,51, т.е. 51%. Этот эффект показывает еще одно преимущество однокомпонентного линейного извещателя: его потенциальная чувствительность в два раза выше, чем у двухкомпонентного, а реально при установлении одинаковой чувствительности выше помехозащищенность из-за увеличения в два раза порога.

Эффективность линейного дымового извещателя

Некорректное тестирование линейного дымового извещателя даже опытными инсталляторами приводит к ложным выводам о его более низкой чувствительности по сравнению с точечным оптико-электронным извещателем. Действительно, если при поступлении дыма в оптическую камеру быстро происходит активизация обычного датчика, то аналогичное "задымление" светофильтра линейного извещателя не вызывает никакой реакции. Подобное тестирование не может показать работоспособность ни линейного, ни точечного извещателя, т.к. задымление незначительного объема помещения вблизи извещателей даже отдаленно не воспроизводит физические процессы, сопровождающие реальное возгорание.

Проведем сравнение эффективности линейного извещателя с точечными дымовыми извещателями по чувствительности. Для получения возможности сравнения необходимо оценить чувствительность этих извещателей в одних единицах: чувствительность линейного извещателя определяется в абсолютных единицах затухания, а чувствительность точечного извещателя задается в удельных единицах, т.е. величина затухания на расстоянии один метр или один фут. В соответствии с НПБ 65-97 "Извещатели пожарные дымовые оптико-электронные" чувствительность точечных извещателей определяется при испытаниях в аэродинамической трубе замкнутого типа, где через извещатель проходит воздух с аэрозолью (НПБ 65-97 Приложение 1) и должна устанавливаться в пределах 0,05 - 0,2 дБ/м. Для перевода абсолютного значения затухания в удельные единицы оптической плотности среды необходимо его разделить на протяженность зоны в метрах. Соответственно, требованиям НПБ 82-99 по чувствительности линейного дымового извещателя от 0,4 дБ до 5,2 дБ при равномерном задымлении 10 метровой зоны соответствует удельная оптическая плотность в пределах от 0,04 дБ/м до 0,52 дБ/м, а при протяженности зоны 100 метров - в пределах от 0,004 дБ/м до 0,052 дБ/м.

Рис.7 Аэродинамическая труба

1 - электрическая плитка ø200мм
2 - термопара
3 - деревянные бруски

Рис.8 Очаг ТП-2

Рис.9 Очаг ТП-3


Рис.10 Размеры помещения и схема расположения

Теоретически при постоянной чувствительности эффективность линейного извещателя повышается с увеличением протяженности защищаемой зоны. Однако этот эффект проявляется только в сравнительно узких невысоких помещениях и на стадии полного задымления помещения. В реальных условиях необходимо учитывать ограничение зоны задымления на первом этапе возгорания. Нагретый воздух от очага возгорания при подъеме к потолку и распространении вдоль него охлаждается и не распространяется на всю площадь подпотолочного пространства большого помещения. Чем выше потолок, тем меньше задымленная площадь под потолком. Этот эффект определяет уменьшение защищаемой дымовыми точечными и линейными извещателями площади при увеличении высоты помещения (см. таблицы 5, 6 НПБ 88-2001*).

С другой стороны, чувствительность точечного дымового извещателя, измеренная в аэродинамической трубе, не сопоставима с чувствительностью в реальных условиях. В месте расположения извещателя скорость воздушного потока увеличивается за счет уменьшения сечения трубы и возникает турбулентность, которая отсутствует при распространении дыма вблизи потолка. Для снижения этого эффекта необходимо увеличивать сечение аэродинамической трубы, что определяет габариты и стоимость данного оборудования. На рис. 7, в качестве иллюстрации, показана установка для испытаний дымовых пожарных извещателей в компании Систем Сенсор. Этот способ тестирования при производстве извещателей позволяет контролировать стабильность чувствительности.

Для получения информации об эффективности извещателя в реальных условиях используются тестовые пожары, методика проведения которых и критерии оценки результатов приведены в европейском стандарте по дымовым извещателям точечным EN54 ч. 7 и линейным EN54 ч. 12, а также в российском ГОСТ Р50898-96 "Извещатели пожарные. Огневые испытания".

Существует шесть типов тестовых пожаров: ТП-1 - открытое горение древесины, ТП-2 - тление древесины, ТП-3 - тление хлопка, ТП-4 - горение полиуретана, ТП-5 - горение гептана и ТП-6 - горение спирта. Дымовые точечные извещатели испытываются по четырем тестовым пожарам ТП-2, ТП-3, ТП-4, ТП-5. Каждый тестовый очаг не только состоит из определенного материала, но и имеет вполне определенную конфигурацию и размеры. Очаг ТП-2 состоит из 10 высушенных буковых брусков (влажность ~5%) размерами 75 х 25 х 20 мм, расположенных на поверхности электрической плиты диаметром 220 мм, имеющей 8 концентрических пазов глубиной 2 мм и шириной 5 мм, внешний паз должен располагаться на расстоянии 4 мм от края плиты, расстояние между смежными пазами должно составлять 3 мм (см. рис. 8), мощность плиты должна быть примерно 2 кВт.Очаг ТП-3 состоит примерно из 90 хлопковых фитилей длиной 800 мм и массой примерно 3г каждый, прикрепленных к проволочному кольцу диаметром 100 мм, подвешенному на штативе (см. рис. 9). Собранные в пучок концы фитилей поджигают открытым пламенем, затем пламя задувают до появления тления, сопровождающегося свечением.

Очаг ТП-4 состоит из трех матов из пенополиуретана (без добавок, повышающих огнестойкость) плотностью 20 кг/м 3 и размерами 500 х 500 х 20 мм каждый, уложенные один на другой, которые воспламеняются при помощи 5 мл спирта в емкости диаметром 50 мм, установленной под углом нижнего мата. Очаг ТП-5 - это 650г гептана с добавлением 3% толуола в квадратном поддоне из стали размерами 330х330х50 мм.

Испытания проводятся в помещении длиной 9 - 11 метров, шириной 6 - 8 метров и высотой 3,8 - 4,2 метров, в центре которого на полу располагается тестовый очаг пожара. Тестируемые точечные извещатели располагаются на потолочном перекрытии по окружности на расстоянии 3 м от его центра в секторе 60° (см. рис. 10). Здесь же установлены измеритель оптической плотности среды m (дБ/м), радиоизотопный измеритель концентрации продуктов горения Y (относительные единицы) и измеритель температуры Т (°С). Два тестируемых линейных извещателя располагаются симметрично и их оптические оси находятся на расстоянии 2,5 метров от центра помещения.

По результатам испытаний для каждого вида тестового очага извещатели разделяются на три группы, не считая не прошедших испытание: класс А (наиболее чувствительный) с предельными значениями Т1=15°С, m1=0,5 дБ/м, Y1=1,5; класс В (средний) Т2=30°С, m2=1 дБ/м, Y2=3,0 и класс С (наименее чувствительный) Т3=60°С, m3=2,0 дБ/м, Y3=6,0. Таким образом, допускается различие в оптической плотности внутри дымовой камеры и открытом пространстве более чем в 10 раз: наименьшая чувствительность по НПБ 65-97 в дымовом канале 0,2 дБ/м, а по тестовым пожарам 2,0 дБ/м. И противоречия здесь нет: в испытательном помещении по ГОСТ Р 50898-96 размером 10±1 м х 7±1 м и высотой 4±0,2 метра сказывается аэродинамическое сопротивление дымозахода пожарного извещателя. Неудачная конструкция дымозахода и дымовой камеры пожарного извещателя, относительно низкая площадь дымозахода по сравнению с внутренним объемом извещателя могут привести к снижению чувствительности в реальных условиях более чем в 10 раз. В той или иной степени этот эффект проявляется у любого точечного дымового извещателя с дымовой камерой и с конструктивными элементами для защиты от пыли.

В линейном дымовом извещателе этот эффект полностью отсутствует, так как дым поступает в контролируемую зону без преодоления каких-либо препятствий. Таким образом, линейный извещатель с порогом 3 дБ (50%) при равномерном задымлении на протяжении даже 10 метров обеспечивает чувствительность эквивалентную удельной оптической плотности среды 0,3 дБ/м. Т. е. по классификации точечных дымовых извещателей по ГОСТ Р 50898-96 соответствует самому чувствительному классу А. При пороге 1,25 дБ (25%) соответственно получаем эквивалентную удельную оптическую плотность среды 0,125 дБ/м, что в 4 раза выше нижней границы класса А.

Кроме того, линейный дымовой извещатель обеспечивает лучшую эффективность по обнаружению различных типов пожаров, по сравнению с точечными оптико-электронными, ионизационными и тепловыми извещателями (таблица 2).

Таблица 2. Чувствительность пожарных извещателей к тестовым очагам пожара
(О - отлично обнаруживает; Х - хорошо обнаруживает; Н - не обнаруживает)

Тип тестового пожара
ТП-1 ТП-2 ТП-3 ТП-4 ТП-5 ТП-6
Характеристика Открытое горение древесины Пиролиз древесины Тление хлопка Открытое горение пластмассы Горение гептана Горение спирта
Основные сопутствующие факторы Дым, пламя, тепло Дым Дым Дым, пламя, тепло Дым, пламя, тепло Пламя, тепло
Тепловой Х Н Н Х Х Н
Дымовой оптический Н О О Х Х О
Дымовой ионизационный О Х Х О О Н
Комбинированный тепловой, дымовой оптический и дымовой ионизационный О О О О О О
Дымовой линейный Х О О О О Н

В таблице 3 приведены результаты натурных испытаний дымовых линейных извещателей 6500 на тестовые пожары c установленной чувствительностью 40% (2,22 дБ) при расстоянии между приемопередатчиком и рефлектором 5 метров.

Таблица 3. Результаты испытаний дымовых линейных извещателей

Вид ТП

№ п/п

Время активизации (мин:сек)

ТП-2 (тление древесины) 1 9:36 0.92 0.64 -
2 9:32 0.92 0.64 -

ТП-3 (тление хлопка)

1 5:02 2.69 0.42 -
2 5:02 2.71 0.43 -

ТП-4 (горение полиуретана)

1 1:04 1.92 0.56 4.35
2 1:04 1.92 0.56 4.35
ТП-5 (горение гептана) 1 1:33 2.67 0.52 16.98
2 1:29 2.54 0.45 18.06

Данные результаты подтверждают отсутствие зависимости чувствительности линейного извещателя 6500 от вида дыма. Он одинаково хорошо реагирует как на "светлые" дымы, выделяющиеся при тлении дерева и текстильных материалов, так и на "черные" дымы, выделяющиеся при горении пластика, изоляции кабеля, резинотехнических изделий, битумных материалов и т.д. Для сравнения в таблице 4 приведены результаты испытаний дымовых точечных оптико-электронных извещателей. Эти испытания проводились в разное время, вследствие чего имеются различия в скоростях нарастания оптической плотности среды, концентрации взвешенных частиц и температуры.

Таблица 4. Результаты испытаний дымовых точечных оптико-электронных извещателей

Вид ТП

№ п/п

Время активизации (мин:сек)

Параметры тестового очага при активизации

Y
ТП-2 (тление древесины) 1 7:47 0.73 0.80 -
2 6:10 0.52 0.46 -
3 7:49 0.79 0.80 -
4 6:53 0.63 0.59 -
ТП-3 (тление хлопка) 1 6:09 1.49 0.95 -
2 5:29 1.04 0.58 -
3 5:48 1.37 0,86 -
4 5:35 1.11 0.72 -
ТП-4 (горение полиуретана) 1 2:11 3.35 0.91 8.4
2 2:15 3.61 1.00 10.3
3 2:17 3.61 1.00 10.3
4 2:17 3.61 1.00 10.3
ТП-5 (горение гептана) 1 2:45 4.58 0.92 19.1
2 2:21 3.69 0.80 17.1
3 2:17 3.73 0.81 17.0
4 2:13 3.53 0.81 16.0

Таким образом, даже при сравнительно невысоких потолках (4 м) и незначительной протяженности оптического луча (5 м), линейный извещатель активизируется при меньших уровнях удельной оптической плотности среды по сравнению с точечными оптико-электронными извещателями. Причем, если для точечного извещателя условия проведения испытаний соответствуют условиям эксплуатации на большинстве объектов с незначительными отклонениями, то для линейных извещателей эти условия наиболее неблагоприятные для его работы. С увеличением протяженности защищаемой зоны при фиксированном уровне чувствительности в абсолютных единицах затухания линейный извещатель будет активизироваться соответственно при меньших значениях удельной оптической плотности. С увеличением высоты помещения преимущества еще больше усиливаются, т.к. рассеивание дыма на большой высоте влияет на линейный извещатель в меньшей степени, чем на обычный точечный.

Заключение

Современные дымовые линейные извещатели при корректной установке и настройке обеспечивают высокий уровень противопожарной защиты. Они высокоэффективны при обнаружении практически любых типов очагов пожара с различными дымами: от тления дерева и текстиля до горения пластика, резины, битума, изоляции кабеля, что обеспечивает универсальность их применения. Использование линейного извещателя однокомпонентной конструкции в сравнении с двухкомпонентным сокращает в несколько раз объем монтажных работ, расход кабеля и время юстировки.

Системы безопасности S&S "Groteck" №3 (81), 2008

Линейный тепловой извещатель (термокабель) производства фирмы Protectowire (США) представляет собой кабель, который позволяет обнаружить источник перегрева в любом месте на всем его протяжении. Термокабель представляет собой единый датчик непрерывного действия и применяется в тех случаях, когда условия эксплуатации не позволяют установку и использование обычных датчиков, а в условиях повышенной взрывоопасности применение термокабеля является оптимальным решением.

Линейный тепловой извещатель Protectowire состоит из двух стальных проводников, каждый из которых имеет изолирующее покрытие из термочувствительного полимера. Проводники с изолирующим покрытием скручиваются для создания между ними механического напряжения, затем покрываются защитной оболочкой и помещаются в оплетку для изоляции от воздействия неблагоприятных условий окружающей среды.

Принцип действия термокабеля

Принцип действия термокабеля: при достижении порогового значения температуры, под действием давления проводников, происходит разрушение изоляционного покрытия из теплочувствительного полимера, позволяя проводникам войти в контакт друг с другом. Это происходит в первой точке перегрева на трассе термокабеля. Для срабатывания сигнала не требуется ждать нагрева участка, имеющего определенную длину. Термокабель Protectowire является максимальным тепловым извещателем и поэтому позволяет генерировать сигнал тревоги при достижении температурного порога в любой точке по всей длине кабеля.

Технические характеристики термокабеля Protectowire:

— Высокая чувствительность на всем протяжении
— Четыре температурных диапазона
— Высокая устойчивость к влажности, пыли, низким температурам и химическим реагентам
— Незаменим во взрывоопасных зонах
— Прост в монтаже и наладке
— Экономичен, никаких расходов по эксплуатации
— При необходимости расширения просто добавляется к системе
— Не требует обслуживания. Ожидаемый срок службы более 25 лет

В настоящее время имеются несколько типов термокабеля Protectowire, отличающиеся друг от друга модельным типом и материалом, из которого сделана внешняя защитная оплетка, для использования в самых различных условиях окружающей среды.

Критерии выбора модели термокабеля для различных температурных диапазонов:

Диапазон температур:
Основной Промежуточный Высокий Сверхвысокий
Температура срабатывания: 68,3°С 87,8°С 137,8°С 180°С
Минимальная температура окружающей среды: -44°С
Максимальная температура окружающей среды: до 37,8°С до 65,6°С До 93,3°С до 105,0°С
Стандартный, многоцелевой: PHSC-155-EPC PHSC-190-EPC PHSC-280-EPC PHSC-356-EPC
Абразивно и химически стойкий: PHSC-155-EPR PHSC-190-EPR PHSC-280-EPR PHSC-356-EPR
Комбинированный,
на две температуры срабатывания:
PHSC-68/93-TRI:

Низкая температура предтревоги 68.3°C;
высокая температура предтревоги 93.3°C
Специальный,
для низких температур до — 57°С:
PHSC-135-XLT:
Максимальная установленная температура окружающей среды до 37.8°C;
Температура срабатывания 57°С

Основные области применения термокабеля Protectowire:

Термокабель Protectowire используется в качестве пожарного извещателя в системах пожарной сигнализации и противопожарной защиты. Применение термокабеля оптимально и эффективно в различных труднодоступных, опасных, промышленных зонах. Купить термокабель можно в нашей фирме — .

Объекты, для которых рекомендуется использование термокабеля:
кабельные трассы;
тоннели;
склады;
электростанции;
эскалаторы;
элеваторы;
открытые стеллажи для хранения;
конвейерные транспортеры;
лифтовые шахты;
мусоропроводы;
пылесборники;
лестничные пролеты;
мосты и пирсы;
ангары для самолетов;
другие объекты в нефтегазохимических, угледобывающих, сталелитейных, транспортных и взрывоопасных отраслях.

Термокабель легко добавляется к любой системе автоматической пожарной сигнализации. Для этого необходимо иметь устройство контроля с входами типа «сухой контакт». Термокабель имеет российский сертификат пожарной безопасности и его применение на территории Российской Федерации регламентируется НПБ 88-01.

В настоящей статье делается попытка максимально подробно объяснить устройство и принцип действия, а также способы и область применения линейного теплового пожарного извещателя (термокабеля) в системах автоматической пожарной сигнализации и в автоматических установках пожаротушения.

Главный инженер проекта ООО «АСПТ Спецавтоматика»
В.П. Соколов

На предприятиях нефтегазового комплекса, в металлургическом и химическом производстве, в кабельных коллекторах и каналах, транспортных и технологических тоннелях при создании систем автоматической пожарной сигнализации и систем пожаротушения, часто приходится сталкиваться со сложными условиями эксплуатации данного оборудования. Взрывоопасные и пожароопасные зоны, присутствие влаги, абразивной пыли, повышенное загрязнение, низкие температуры или резкий перепад температур, а также агрессивная среда диктуют жесткие требования к автоматическим пожарным извещателям и их подбору.

По условиям эксплуатации оборудования систем автоматической пожарной сигнализации все защищаемые объекты можно условно разделить:

— на объекты с нормальными условиями эксплуатации;

— на объекты с тяжелыми условиями эксплуатации;

— на специальные объекты.

К нормальным условиям эксплуатации можно отнести внутренние помещения защищаемого объекта, которые в холодное время года отапливаются. Запыленность, наличие агрессивных сред и ненормированные источники тепла отсутствуют.

Объекты с тяжелыми условиями эксплуатации - это объекты с отрицательными перепадами температур как отрицательными, так и высокими положительными, с постоянным наличием конденсата вследствие перепада температур и влажности, с повышенной запыленностью (твердая, абразивная и водяная взвесь) и объекты с агрессивными средами.

Специальные объекты - это объекты, имеющие взрывоопасные условия эксплуатации.

Уникальность конструкции линейного теплового пожарного извещателя (термокабеля SafeCable LHD) позволяет использовать его для защиты всех вышеперечисленных объектов без исключения. Именно в этих условиях линейный тепловой пожарный извещатель (термокабель SafeCable LHD) имеет неоценимые преимущества.

Принцип работы термокабеля SafeCable LHD.

Линейный тепловой пожарный извещатель (термокабель SafeCable LHD) состоит из двух стальных проводников, изготовленных по специальной технологии, каждый из которых имеет изолирующее покрытие из термочувствительного полимера. Стальные проводники с изолирующим покрытием из термочувствительного полимера скручиваются для создания между ними пружинящей силы, затем обматываются изоляцией и помещаются в оплетку для защиты от воздействия неблагоприятных условий окружающей среды. Линейный тепловой пожарный извещатель представляет собой кабель, который позволяет обнаружить источник тепла в любом месте на всем его протяжении, т. е. является единым датчиком (сенсором) непрерывного действия. При достижении критической температуры терморезисторный материал размягчается, металлические проводники начинают контактировать друг с другом, тем самым, инициируя сигнал пожарной тревоги. Для срабатывания термокабеля не требуется ждать нагрева определенной длины участка. Термокабель SafeCable LHD является максимальным тепловым извещателем и поэтому позволяет генерировать сигнал тревоги при достижении температурного порога в любой точке на протяжении всей длины линейного теплового пожарного извещателя.

Устройство термокабеля SafeCable LHD (см. Рис-1).

Металлические жилы со специальным покрытием:

— сталь обеспечивает прочность на растяжение;

— медь увеличивает электропроводность;

— олово для коррозионной стойкости.

Чувствительный полимер:

— реагирующая на тепло оболочка.

Внешнее покрытие:

— общего назначения;

— полипропиленовая;

— нейлоновая.

Кабель:

— оболочка в зависимости от типа термокабеля имеет разные цвета

— внешний диаметр (3,2мм.);

– достаточно гибкий для монтажа.

Существует пять типов линейного теплового пожарного извещателя (термокабеля SafeCable LHD), отличающегося порогом температурного срабатывания и имеющего три варианта внешнего защитного покрытия, отличающегося физическими и химическими свойствами.

Технические характеристики внешнего покрытия (оболочки) термокабеля SafeCable LHD:

— термокабель с покрытием общего назначения имеет очень прочную экструзионную внешнюю защитную ПВХ оболочку, обеспечивающую надежную защиту термокабеля при работе практически в любых условиях окружающей среды. Оболочка термокабеля обладает свойствами огнестойкости и влагостойкости, а также имеет достаточную гибкость при низких температурах окружающей среды. Термокабель с оболочкой общего назначения хорошо подходит для защиты жилых и коммерческих зданий, так же промышленных объектов;

— термокабель с покрытием из полипропилена с маркировкой буквой «Р», имеет прочную внешнюю оболочку устойчивую к воздействию ультрафиолетового излучения, характеризуется высокой эластичностью, устойчивостью к истиранию, воздействию атмосферных условий и высокой надежностью функционирования при высоких температурах окружающей среды. Стоек к воздействию кислот, агрессивных сред, масел и нефтепродуктов. Предназначен для широкого применения в промышленности;

— термокабель с маркировкой буквой «N» с покрытием состоящего из двухслойной оболочки, внутреннего ПВХ слоя и внешнего слоя из нейлона. Этот термокабель специально предназначен для промышленного использования, например, для защиты конвейеров, где наибольшую важность имеет прочность на истирание. В принципе, защиту от абразивной пыли обеспечивает главным образом внешний защитный слой из нейлона, сохраняя при этом электрические и механические свойства.

Технические характеристики – термокабеля SafeCable LHD

  1. Диаметр термокабеля
  2. Радиус изгиба, не менее
  3. Максимальное напряжение
  4. Сопротивление термокабеля (R)
  5. Температура срабатывания (°C):
  6. Пробивное напряжениие (Uв)
  7. Изменение сопротивления термокабеля от температуры
  8. Минимальная рабочая длина термокабеля
  9. Максимальная рабочая длина термокабеля

— 3,2мм.
— 6,8кг/305м.
— 76,2mm.
— ~ 30В, = 42В.
— 0,164 Ом/м.
— 68°, 78°, 88°, 105°, 180°
— 1000 В.
— 1% на 5 град.
— 0,5м.
— 3000м.

Внимание: Термокабель SafeCable LHD является пожарным извещателем с нормально открытым контактом. Все правила и нормы СП 5.13130.2009 для точечного теплового пожарного извещателя с нормально открытым контактом в соответствии с Таблицей 13.5 автоматически распространяются и на термокабель.

Выкопировка из свода правил СП 5.13130.2009.

13.6 Точечные тепловые пожарные извещатели.

13.6.1 Площадь, контролируемая одним точечным тепловым пожарным извещателем, а также максимальное расстояние между извещателями, извещателем и стеной, за исключением случаев, оговоренных в п. 13.3.7, необходимо определять по таблице 13.5 но, не превышая величин, указанных в технических условиях и паспортах на извещатели.

Таблица 13.5

13.6.2 Тепловые пожарные извещатели следует располагать с учетом исключения влияния на них тепловых воздействий, не связанных с пожаром.

13.7 Линейные тепловые пожарные извещатели.

13.7.1 Чувствительный элемент линейных и многоточечных тепловых пожарных извещателей располагают под перекрытием либо в непосредственном контакте с пожарной нагрузкой.

13.7.2 При установке извещателей некумулятивного действия под перекрытием расстояние между осями чувствительного элемента извещателя должно удовлетворять требованиям таблицы 13.5.

Расстояние от чувствительного элемента извещателя до перекрытия должно быть не менее 25мм.

В настоящий момент на Российском рынке имеется несколько типов, конструктивно отличающих друг от друга, линейных тепловых пожарных извещателей:

— Первый тип полупроводниковый это линейный тепловой пожарный извещатель, у которого в качестве сенсора температуры используется покрытие проводов веществом, имеющим отрицательный температурный коэффициент. Данный вид термокабеля работает только в комплекте с электронным микропроцессорным блоком управления. При воздействии температуры на любой участок термокабеля изменяется сопротивление в точках воздействия. С помощью управляющего блока можно задать разные пороги температурного срабатывания. Кабель после кратковременного воздействия температуры восстанавливает свою работоспособность. Конструкция термокабеля функционально не имеет возможности измерять расстояние до точки срабатывания. Максимальная рабочая длина данного типа термокабеля составляет значение порядка 300 м.

— Второй тип механический это линейный тепловой пожарный извещатель, у которого в качестве сенсора температуры используется герметичная медная трубка Ф=6мм. (капиляр) заполненная инертным газом и соединенная с датчиком давления. При воздействии температуры на любой участок сенсорной трубки изменяется внутреннее давление газа. Датчик давления регистрирует это изменение и передает сигнал в микропроцессорный электронный блок для обработки. Данный тип линейного теплового пожарного извещателя многоразового действия. Конструктивно термокабель данного типа является максимально-дифференциальным пожарным извещателем. Длина рабочей части медной трубки сенсора имеет ограничение по длине от 20 до 130 метров.

— Третий тип многоточечный тепловой пожарный извещатель это линейный тепловой пожарный извещатель , у которого в качестве сенсора температуры используется витая пара проводов с включенными в него термопарами на расстоянии друг от друга порядка 50 см. Принцип действия термокабеля такого типа основан на суммировании э.д.с. от отдельных термопар. За счет распространения тепла в объеме защищаемого помещения в условиях пожара рост температуры будет наблюдаться в местах расположения каждой термопары. Таким образом, датчик обеспечивает суммирование рассеянного по помещению тепла. Приемный блок преобразует, полученные сигналы и сравнивает их с заложенными в его память параметрами тревоги, заданными порогами температурного срабатывания. При превышении этих пределов устройство выдает тревогу на пожарную панель. Чувствительность датчика зависит от количества чувствительных элементов, расположенных в одном помещении. Поэтому при проектировании систем пожарной сигнализации необходимо учитывать, что чувствительность извещателя зависит от длины его сенсора. Данный тип линейного теплового пожарного извещателя многоразового действия. Конструктивно термокабель данного типа является максимально-дифференциальным пожарным извещателем. Длина рабочей части многоточечного датчика имеет ограничение по длине более 300 метров.

— Четвертый тип оптический это линейный тепловой пожарный извещатель, у которого в качестве сенсора температуры используется оптоволоконный кабель. Принцип действия оптического линейного датчика основан на изменении оптической прозрачности сенсора в зависимости от изменения температуры. Когда свет от лазера попадает на участок возгорания, часть его отразится. Устройство обработки определяет мощность прямого и отраженного света, скорость его изменения и вычисляет значение изменения температуры, и место, где это произошло. Данный тип линейного теплового пожарного извещателя многоразового действия. Он работает только в комплекте с электронным микропроцессорным блоком управления и обработки данных. Максимальная длина оптического сенсора может достигать до 10 километров и более (зависит от качества оптоволокна). Данному типу термокабеля требуются квалифицированные специалисты для монтажа и обслуживания.

— Пятый тип электромеханический это линейный тепловой пожарный извещатель, у которого в качестве сенсора температуры используется термочувствительный материал, нанесенный на два механически напряженных провода (витая пара). Под воздействием температуры термочувствительный слой размягчается и два проводника накоротко замыкаются. Разновидностью данного термокабеля является линейный тепловой пожарный извещатель с тремя термочувствительными проводниками имеющие разные пороги срабатывания под воздействием температуры (68,3°C и 93,3°C). Термокабель разных фирм производителей может иметь разное внутреннее сопротивление стальных проводников от 0,164 Ом/м. до 0,75 Ом/м. Внутреннее сопротивление стальных проводников определяет максимально возможные рабочие длины термокабеля, эта размерность соответствует длинам от 1500м. до 3000м. Благодаря наличию внутреннего сопротивления проводников, стало возможным измерение расстояния до точки срабатывания термокабеля под воздействием температуры. Конструктивно таким прибором является очень чувствительный электронный цифровой омметр. Но если вам не нужна эта опция, то термокабель может работать со всеми пожарными приемно-контрольными приборами, которые работают с нормально открытыми точечными пожарными извещателями. Именно данный тип линейного теплового пожарного извещателя (термокабеля) мы рассматриваем с вами в этой статье.

Любая точка, взятая на термокабеле электромеханического типа, является самостоятельным точечным тепловым нормально открытым пожарным извещателем. Таким образом, на одном метре трмокабеля мы условно имеем десятки, если не сотни точечных тепловых пожарных извещателей. Если четко следовать требованиям технической характеристики термокабеля SafeCable LHD, то минимальные отрезки, на которые можно разделить термокабель должны быть равны 0,5м. Возьмем в качестве примера 10м. термокабеля и разделим на 20 отрезков по 0,5м. Получаем шлейф пожарной сигнализации с двадцатью линейными тепловыми пожарными извещателями (в виде небольших отрезков). Вопрос лишь в том, зачем его делить на отрезки, а потом соединять между собой в целое, если сам термокабель несет в себе две функции, является линейным (многоточечным) тепловым пожарным извещателем (сенсором) и сам себя соединяющим линейным кабелем. Может этот дороже, но надежность его работы без соединений будет на порядок выше.

На концах термокабеля надо обязательно отступать по10см. Это зона некорректной работы термокабеля из-за частичного роспуска скрученных стальных проводников линейного теплового пожарного извещателя. Очень велика вероятность того, что для замыкания проводников между собой не хватить механического усилия скрутки.

При больших длинах используемого линейного теплового пожарного извещателя (термокабеля SafeCable LHD), например, более шести ста метров, необходимо учитывать внутреннее сопротивление самого термокабеля, которое должно вычитаться из оконечного резистора в пожарном шлейфе. Так внутреннее сопротивление одного метра термокабеля SafeCable LHD равно 0,164 Ом, а шести ста метров будет 98,4 Ом. При разбросе номинала оконечных резисторов на 10-15% , которыми мы пользуемся при монтаже и оконечном резисторе, например 2,4 кОм, величина которого зависит от конструкции прибора, плюс сопротивление термокабеля, мы можем, получить сигнал обрыва шлейфа. Если сопротивление термокабеля большое его надо вычесть из оконечного резистора.

Термокабель SafeCable LHD при замыкании начального участка, при воздействии очага возгорания, выдает сухой контакт без сопротивления, поэтому для того, чтобы контрольная панель не выдала сигнал короткое замыкание необходимо добавочное сопротивление. В зависимости от применяемой станции пожарной сигнализации добавочное сопротивление в начале участка может составлять от 500 до1200 Ом. Добавочный резистор «Rд» надо обязательно вычитать из оконечного резистора шлейфа сигнализации.

Рассмотрим некоторые особенности монтажа электромеханического линейного теплового пожарного извещателя (термокабеля):

  • При его прокладке в помещениях по потолку и стенам, термокабель должен отстоять от любой поверхности, исключая точки крепления, не менее чем на 25 мм. чтобы поверхность крепления не работала как охлаждающий радиатор.
  • В случае, когда термокабель используется для защиты электродвигателей, трансформаторов и силовой разводки кабельных коллекторов кабель должен крепиться как можно ближе к защищаемой поверхности. Поверхности должны контактировать.
  • При монтаже термокабеля на улице необходимо организовывать защиту в виде навеса из уголка 5х5мм. из металла или ПВХ для защиты от дождя, снега, образования сосулек, ветра и прямого попадания солнечных лучей, особенно в летний период.
  • При защите парилок и саун прятать термокабель в специальных открытых нишах, уберегая его от прямого попадания горячего пара или воздуха в момент подачи жара.
  • Температурный порог срабатывания термокабеля выбирать на 35 градусов выше, чем рабочая температура в защищаемом помещении и максимально возможная плюсовая температура на улице. Для саун для надежности необходимо брать на 60 градусов выше, чем рабочая температура потому, что выработка тепла в сауне циклическая.
  • Для исключения ложных срабатываний защищать торцы термокабеля от попадания влаги и других растворяющих или токопроводящих испарений с помощью монтажных коробок соответствующей защиты.
  • Крепление термокабеля с простым соединительным проводом или с оконечным резистором из-за конструктивных особенностей осуществлять через клемные соединения. Причем клемник в монтажной коробке должен быть развернут и находиться под углом 45 градусов к оси входного отверстия монтажной коробки (см. Рис-2). Данное положение препятствует вытаскиванию стальных жил термокабеля из зажимов клемника при раскачивании или скручивании термокабеля по оси.

  • Самым надежным соединением термокабеля в монтажной коробке является скручивание стальных концов термокабеля в кольца определенного диаметра под винт клемника (см. Рис-3). После чего данную монтажную коробку заливают специальной пластичной мастикой для защиты зажимов клемника от агрессивной среды. Пластичность мастики должна соответствовать климатическим условиям работы. В случае возникновения необходимость ремонта, покрытие из мастики должно легко удаляться из монтажной коробки.

  • При креплении термокабеля не производить сильную механическую затяжку, чтобы механически не вызвать срабатывание, то есть короткое замыкание термокабеля.
  • При защите помещений с высотой потолков более 9-ти метров расстояние между параллельными нитями термокабеля сокращаются до двух метров (рекомендация фирмы производителя). Данное отступление от СП 5.13130-2009 требует обязательного согласования в виде специальных технических условий (СТУ) с местными органами пожарной инспекции. В зависимости от функционального назначения таких объектов по требованиям пожарной безопасности могут быть заложены дополнительные компенсационные мероприятия по пожарной защите.

Когда-то единственным поставщиком электромеханического линейного теплового пожарного извещателя (термокабеля) на Российский рынок была фирма «Protectowire». В настоящий момент таких фирм несколько, включая и наших собственных производителей данного вида пожарного оборудования. Один метр термокабеля в зависимости от производителя стоит от 200 до 600 рублей и выше. Если рассматривать метр термокабеля как точечный тепловой пожарный извещатель, то вроде цена не столь большая. Но, конструкция термокабеля тем и оригинальна, что является не только тепловым линейным датчиком, но и кабелем, соединяющим сам себя. Значит у термокабеля своя ниша в системе автоматической пожарной сигнализации, где можно применять в качестве теплового пожарного извещателя только термокабель.

Вот некоторые интересные решения по применению термокабеля.

Тоннели.

Технологические и транспортные тоннели являются чрезвычайно сложными инженерно-техническими комплексами и предъявляют к системам активной противопожарной защиты особые требования. Для обеспечения нормальных условий эксплуатации и обслуживания тоннеля, а также создания условий эффективного подавления огня в условиях чрезвычайной ситуации (ЧС) и экстренной эвакуации людей создается целый комплекс противопожарных мероприятий в системе активной противопожарной защиты. Автодорожный транспортный тоннель - это экстремальные условия эксплуатации пожарного оборудования, большое скоплением людей и автомобилей (человеческий фактор), низкие температуры зимой, изменяемая влажность, запыленность, агрессивная среда от выхлопных газов, вибрация и другие техногенные воздействия. Поэтому наилучшим решением для любых транспортных тоннелей является термокабель. В качестве примера можно взять «Лефортовский» и «Гагаринский» тоннели г. Москвы, которые уже защищены электромеханическим термокабелем. В автомобильных тоннелях линейный тепловой пожарный извещатель устанавливается на потолке прямо над проезжей частью в соответствии с требованиями правил СП 5.13130-2009. Кабельный коллектор и кабельные стояки также защищаются термокабелем. Выбор типа и температуры срабатывания термокабеля определяются техническими условиями.

Термокабель в тоннелях крепится с помощью стальных тросов, натянутых вдоль проезжей части. Из-за низких температур и образования наледи, постоянных сквозняков и ветра трос с термокабелем может раскачиваться, поэтому особое внимание надо уделять креплению кабеля в монтажной коробке. Мы уже говорили об этом выше. В зависимости от времени года тепла или холода трос может провисать или укорачиваться. Для того чтобы натяжение было всегда одинаковым необходимо использовать устройство в виде металлического груза, тянущего трос через небольшой шкив. Груз должен находиться в специальном приемном стакане, предотвращающем случайное падение груза вниз.

Рядом с «Гагаринским» автодорожным транспортным тоннелем проходит железнодорожный транспортный тоннель. Там возникла другая проблема. По этому тоннелю ходят тепловозы. Выхлопная труба тепловоза находится приблизительно на высоте полтора метра от потолка тоннеля. Как оказалось, выхлоп газов из нее имеет достаточно высокую температуру до 400°С., что могло привести к ложному срабатыванию термокабеля, особенно при замедленном движении поезда в тоннеле. Решение нашлось в виде металлического уголка 50х50мм. Он был закреплен на небольшом расстоянии от потолка тоннеля углом в низ. Сам термокабель был положен внутрь уголка на специальное крепление, чтобы он не имел соприкосновения с поверхностью уголка. Металлический уголок защищал термокабель снизу, разбивая поток горячего воздуха в стороны, но это не мешало срабатыванию термокабеля при настоящем пожаре, когда тепло от очага возгорания поднималось вверх и заполняло объем тоннеля у потолка.

Входные холлы.

Большие входные холлы административных зданий всегда вызывают трудности совмещения противопожарной защиты и требований дизайна вестибюля. Поэтому, как правило, фальшпотолки закрываются, наглухо гибсокартоном, с невозможностью сделать в них специальные люки для обслуживания пожарных извещателей. Тем не менее, это пространство заполняется технологическим оборудованием и особенно кабельными сетями. Принципиальным решением данного вопроса стало применение линейного теплового пожарного извещателя (термокабеля) для защиты пространства фальшпотолка закрытого сплошным слоем гибсокартона. Концы отрезков термокабелей защищающих фальшпотолок сводятся в специальное место, где делается люк для обслуживания, там же производится подключение термокабелей к системе пожарной сигнализации. Термокабель не требует обслуживания и может находиться за фальшпотолком десятки лет, выполняя свои главные функции противопожарной защиты.

Ангары для стоянки самолетов.

Ангары для стоянки и обслуживания больших самолетов имеют сложную с огромными пролетами инженерную конструкцию, являются уникальными и дорогими объектами. Для защиты этих конструкций от перегрева при пожаре используется вода. В качестве побудительной системы включения водяного орошения металлических конструкций и ферм используется термокабель. Термокабель находиться в металлических трубах, а сами трубы плотно прижаты к поверхности ферм или приварены к ним. В случае возникновения пожара, подача воды для охлаждения потолочных конструкций будет осуществляться, если металлические фермы, прогреются до температуры срабатывания термокабеля, а это максимально 180°С. Есть критичекая температура для стойкости металла, находящего под нагрузкой, после чего происходит отпуск металла и конструкция начинает деформироваться, а далее под собственным весом разрушаться. Данное решение по использованию линейного теплового пожарного извещателя (термокабеля) в трубе не соответствует принятым требованиям СП 5.13130.2009 к системе пожарной сигнализации. Данное решение скорее относиться к технологии защиты конструкций потолочных ферм и способу применения термокабеля, в качестве теплового сенсора.

Электрические схемы подключения электромеханического термокабеля к приборам пожарной сигнализации.

В качестве приемно-контрольной станции пожарной сигнализации может быть использован любой прибор, использующий тепловые пожарные извещатели с нормально открытыми контактами. В проектах, где используется термокабель с длинами до 3000 метров (например, кабельные коллектора или конвейера), эффективно применять специальные приборы с цифровой индикацией расстояния до точки срабатывания.

При использовании электромеханического линейного теплового пожарного извещателя взрывоопасных помещениях, в соответствии с существующими нормами между приемным прибором и термокабелем должен быть установлен искробезопасный барьер. Оптимальным решением для защиты таких помещений будет прокладка термокабеля из помещения с нормальными условиями в защищаемое помещение и выходом обратно. Таким образом, мы выносим монтаж электрических подключений в нейтральное помещение.

Имеется три варианта подключения электромеханического термокабеля к шлейфам пожарной сигнализации:

— для двухуровневых шлейфов пожарной сигнализации;

— для одноуровневых шлейфов пожарной сигнализации;

— для полярных шлейфов пожарной сигнализации (типа ППК-2, СИГНАЛ и т.д.).

После срабатывания электромеханического линейного теплового пожарного извещателя под воздействием очага возгорания или механического повреждения необходимо восстановить работоспособность термокабеля. Это достигается путем выкусывания поврежденного участка и замены его обычным проводом. Для нахождения точки короткого замыкания используются специальные приборы. Термокабель отключается от контрольной панели и подключается к звуковому генератору. Далее специалист, с помощью специального датчика идя вдоль линейного теплового пожарного извещателя (термокабеля) снимает звуковой сигнал. В точке короткого замыкания звучание становится сплошным. Точность определения короткого замыкания до 1см. Менее точный способ нахождения короткого замыкания в термокабеле, но и наиболее доступный это измерение сопротивления обычным цифровым омметром. Точность определения в данном случае в пределах пяти метров.

На рисунках Рис-4, Рис-5, Рис-6 представлены типовые электрические схемы подключения термокабеля к приборам пожарной сигнализации.

Схема подключения термокабеля в двухуровневый шлейф пожарной сигнализации.

Схема подключения термокабеля в одноуровневый шлейф пожарной сигнализации.

Схема подключения термокабеля в двухполярный одноуровневый шлейф пожарной сигнализации.

Линейный тепловой пожарный извещатель (термокабель SafeCable LHD) легко проектировать, производить монтаж, эксплуатировать и обслуживать. Термокабель показал свою надежность в работе в сложных условиях и во времени. Надо отметить, что потребность в линейном тепловом пожарном извещателе (термокабеле) на Российском рынке определяется его уникальными возможностями в сфере пожарной безопасности.

И в заключении, если у Вас возникли вопросы по применению термокабеля или Вы хотите получить более подробную информацию, специалисты ООО «АСПТ Спецавтоматика» всегда готовы оказать помощь, а также провести тренинги и индивидуальное сопровождение проектов.

Надежность и высокое качество – наш главный приоритет.

Линейный тепловой пожарный извещатель Thermocable ProReact Digital LHD

Thermocable ProReact Digital LHD — это высокотехнологичный линейный тепловой пожарный изв ещатель , который производися уже более 35 лет. Современная передовая технология ProReact Digital, используемая при производстве линейных извещателей, позволяет Thermocable быть всегда на ступень выше и обладать огромным преимуществом над всеми линейными тепловыми извещателями, которые представлены на Российском и мировом рынке.

Линейный тепловой пожарный извещателя ProReact Digital предназначена для определения точки возгорания по всей длине чувствительного элемента (термокабеля). Линейный тепловой пожарный извещателя ProReact Digital представляет собой термокабель с витой парой, триметаллических проводников, которого заключены в полимерное покрытие с чувствительностью к температурному режиму. Два проводника скручены вместе особым способом для сохранения механического натяжения и заключены в наружное защитное покрытие. При привышении температуры заданного значения, полимер расплавляется, проводники смыкаются и выдают сигнал на прямую на панель пожарной сигнализации или на панель пожарной сигнализации, через интерфейсный модуль.

Производсвенная линейка ProReact Digital вклюает в себя:

Классика- ProReact Digital выпускается в оболочки ПВХ, оболочки нейлон, оболочки полипропилен, в дополнительной защитной оболочки из стальной оплетки. Температура чувствительности +68°С, +78°С, +88°С, +105°С, +185°С.

Эсклюзивный -PlusProReact Digital Plus нг FRLS , нг FRHF , малодымный, без выделения галогенов выпускается в оболочки LSZH, и в дополнительной защитной оболочки стальная оплетка. Температура чувствительности +65°С, +75°С, +85°С, +110°С.

Эсклюзивный- ProReact Digital VHT Cable высокотемпературный выпускается в оболочки из силикона и в дополнительной защитной оболочки стальная оплетка. Температура чувствительности + 235 °С.

Наименование

Температуры чувствительности

Оболочки

Применения

ProReact Digital

68°С, +78°С, +88°С, +105°С, +185°С.

ПВХ, нейлон, полипропилен, дополнительная оболочка из стальной оплетки

ProReact Digital Plus нг FRLS, нг FRHF

65°С, +75°С, +85°С, +110°С

LSZH малодымная, без выделения галогенов, стойкая к ультрафиолетовому излучению и агрессивным средам, дополнительная оболочка со стальной оплеткой

Нормальные условия окружающей среды, устойчив к ультрафиолетовому излучению и агрессивным средам, дополнительная защита от механическая повреждений.

ProReact Digital VHT Cable

Высокотемпературная окружающая среда

Thermocable ProReact Digital LHD защищает объекты:


Преимущества Thermocable ProReact Digital LHD

  • Экономиная цена в рублях по фиксированному прайс-листу. Цена не зависит от курса валют.
  • Два варианта подключения: Через интерфейсный модуль и напрямую к панели пожарной сигнализации.
  • Максимальная длина шлейфа — 3000м при прямом подключении и с использованием интерфейсного модуля
  • Является аналоговой заменой всех представленных на российском рынке тепловых линейных пожарных извещателей.
  • Совместим с любой панелью пожарной сигнализации.
  • Гарантированная чувствительность по всей длине кабеля.
  • Минимальный радиус изгиба снижен до 50 мм
  • Диапазон чувствительности от +68,+88,+105,+185 градусов С (классиеский термокабель)
  • Эсклюзивный диапозон чувствительности от +65°С, +75°С, +78 +85°С, +110°Сградусов С
  • Оболочки: ПВХ, нейлон , полипропилен и стальная оплетка, LSZH, силикон.
  • Используется в среде с агрессивными факторами.
  • Защита от УФ-лучей при наружном использовании
  • Защита от механических повреждений
  • Защита от наводок
  • Повышенный уровень противохимической защиты и защиты в условиях щелочных сред

Технология ProReact Digital

Триметалческий проводник из стали с напылением:

Медь, благодаря которой удалось значительно увеличить электропроводимость и снизить сопротивление,

Олово, используемого для коррозийной стойкости.

Внутренняя оболочка:

Термочувствительный полимер.


Область применения

Типичное решение для применения термокабеля — это помещения с большой площади или большой протяжоности, а так же труднодоступные зоны, которые требуют стопроцентного покрытия и защиты, протяжённые участки, зоны с агрессивной средой. Тепловой извещатель устойчив к воздействию пыли, влажности, химических реагентов, высоких и низких температур, может применяться на взрывоопасных участках, прост в накладке, не требует обслуживания. Срок службы — не менее 30 лет.

Интерфейсный модуль ТЕРМОКАБЕЛЬ_МИП2

Модуль интерфейсный пожарный «ТЕРМОКАБЕЛЬ_ МИП2И» представляет собой двухзонный модуль для контроля одной или двух зон линейного теплового пожарного извещеталя. При воздействии высоких температур на чувствительный элемент - линейный тепловой пожарный извещатель, вследствие перегрева или возникновения пожара, в любой из двух зон, МИП2И автоматически рассчитывает расстояние до точки перегрева на линейном тепловом пожарном извещателе и выведет на экран полученное значение, в метрах. Две зоны работают независимо друг от друга, и для каждой зоны отводится отдельная сигнализация и нормально проводимый выход отказа. МИП2И предназначен для установки между линейным тепловым пожарным извещателем и адресной или безадресной панелью управления пожарной сигнализации. МИП2И имеет индикаторы питания, отказа и аварийный индикатор, отвечающие за каждую отдельную зону. Также МИП2И может быть подключено к автоматизированной системе управления технологическими процессами производства при помощи двухпроводного вывода RS-485 Modbus RTU.

Модуль интерфейсный пожарный «ТЕРМОКАБЕЛЬ_ МИП2И» с индикацией точного места возгорания с функцией подключения двух или одного шлейфа линейного теплового пожарного извещателя ProReact Digital (далее модуль и/или аббревиатура МИП2И).

Основные особенности модуля МИП2И:

  • Подключение двух шлейфов линейного теплового пожарного извещается
  • Два режима работы: независимый и двухпороговый
  • Независимый режим обеспечивает независимый контроля за работой, каждого линейного теплового пожарного извещателя подключенного к МИП2И, что позволяет подключать прибору, как сходные по характеристикам линейные тепловые пожарные извещатели (одной температуры чуствитвительности, в оболочке одного вида) так и линейные тепловые пожарные извещатели с разными характеристиками.(разные температуры чуствительности и разные оболочки). При данном режиме работы, в случае возгорания одного из шлейфов прибор подаст сигнал «ПОЖАР» и определит расстояние до очага возгорания.
  • Двухпороговый режим обеспечивает совместный контроль двух зон линейного теплового пожарного извещателя с возможностью выдачи предварительного сигнала о возгорании и сигнала «ПОЖАР». При этом режиме сигнал «ПОЖАР» подается только при срабатывании одновременно двух шлейфов линейнго теплового пожарного извещателя подключенного к МИП2И. При срабатывании только одного шлейфа при прибор определяет расстояние до очага возможного возгорания, но не подает сигнал о пожаре. Данный режим предназначен для защиты от ложных срабатываний.
  • МИП2 работает независимо, так и с подключением к панели пожарной сигнализации.
  • Поддерживает работу протокола MODBUS
  • ЖК-дисплей с индикацией
  • Два варианта подключения линейного теплового пожарного извещателя: на прямую к МИП2И и подключения через ведущий-соединительный кабель, что позволяет сократить количество линейного теплового пожарного извещателя, а так же установить МИП2И в любом удобном для пользователя месте. Калибровка соединительного кабеля осуществляется в автоматическом режиме при первой установки системы.
  • Контроль неисправности(ошибки) линейного теплового пожарного извещается.
  • Возможность подключения одного шлейфа линейного теплового пожарного извещателя.

Технические характеристики модуля интерфейсного пожарного
«ТЕРМОКАБЕЛЬ_ МИП2И»

Наименование

Параметры

Габариты

В180мм х Ш120мм х Г60,5 мм

Класс защиты

N4MA4, 4X (IP65)

Покрытие

Светло-серое, крышка прозрачная

2 строки, 16 символов, подсветка, дисплей отображает статус зоны

Рабочие напряжение

12В пост.тока — 36 В пост.тока

Нормальный режим работы

<10мА <4мА

Обе сигнализации активированы и Подсветка ЖК Дисплея включен

<40мА <15мА

Температурный диапазон

Размещение

5мм восходящее зажимное соединение

Информационный выход

Двухпроводной RS-485 Modbus RTU

Сигнализация

2x релейных контакта без напряжения С-формы

Макс. напряжение

220 В пост.тока /250В перем.тока

Макс. ток 2A

Макс. коммут. мощность 60Вт, 62.5ВА

Макс. напряжение 35 В пост.тока

Макс. ток 80мА

Модуль ТЕРМОКАБЕЛЬ_ МИП2И работает совместно с линейным тепловым пожарный извещателем ProReact Digital .

Схема подключения


Сертификаты

Монтажные аксессуары

Наименование для замены Наличие/срок постаки Описание
TH-1000 ZB-4-QC-MP

НА СКЛАДЕ В МОСКВЕ

Монтажная коробка
TH-100S аналог SR 502

НА СКЛАДЕ В МОСКВЕ

Гермоввод (оцинкованная сталь)
TH-100N

НА СКЛАДЕ В МОСКВЕ

Гермоввод (нейлон)
WAW-N

НА СКЛАДЕ В МОСКВЕ

Нейлонывые монтажные зажимы
OHS-1

НА СКЛАДЕ В МОСКВЕ

Цинковые монтажные клипсы
BC-2

НА СКЛАДЕ В МОСКВЕ

Зажим для крепления на балке. Сталь. Дополнительно требуются зажимы TH-101N и штифты TH-101-2
BC-3

НА СКЛАДЕ В МОСКВЕ

Зажим для крепления на балке. Оцинкованная сталь. Дополнительно требуются зажимы TH-101N и штифты TH-101-2

НА СКЛАДЕ В МОСКВЕ

Пробивной штифт
HPC-2

НА СКЛАДЕ В МОСКВЕ

Клипса для кабельного жёлоба

НА СКЛАДЕ В МОСКВЕ

Клипса для кабельного жёлоба

НА СКЛАДЕ В МОСКВЕ

Клипса для кабельного жёлоба. Толщина материала 4-6,4 мм
PM-3A

НА СКЛАДЕ В МОСКВЕ

Хомут для крепления к трубам с двумя петлями

иной крепёж

Схема подключения линейного теплового пожарного извещателя без использования интерфейсного модуля Thermocable ProReact Digital LHD (прямое подключение)


Торговое имя Thermocable напрямую ассоциируется с производством высококачественных термокабелей — линейных извещателей, реагирующих на температурные изменения. Качество линейного пожарного извещателя Thermocable ProReact Digital LHD подтверждено европейскими, американскими и российскими сертификатами. Тепловой линейный извещатель Thermocable ProReact Digital LHD является высококачественной аналоговой заменой всех представленных на российском рынке тепловых пожарный линейных извещателей. Приобретая Thermocable Вы приобретаете настоящие Английское качество в сочетании с высокотехнологичным современным продуктом.



Поделиться