Фотон оптического излучения. Фотонная теория света

Одна из главных задач экспериментальной физики - проверять предположения теоретиков о том, как устроен и функционирует наш мир. Причем касается эта проверка не только гипотетических теорий и спорных предположений, но и самых, казалось бы, «железобетонных» утверждений. Пусть для теоретиков они выглядят совершенно неизбежными; задача экспериментатора - используя весь инструментарий современной науки, напрямую убедиться, что это утверждение не противоречит опыту.

Взять, к примеру, фотоны - кванты электромагнитного поля. В современной физике считается, что фотоны безмассовы и что они не обладают электрическим зарядом. Для подавляющего большинства теоретиков иначе и быть не может - ведь понятно, откуда в современной физике берется электромагнетизм, и там свойства фотонов автоматически получаются именно такие. Кроме того, даже небольшое отклонение массы или заряда фотона от нуля приведет к совершенно необычным эффектам, которые мы в эксперименте не наблюдаем. Поэтому если фотон и обладает ненулевой массой или зарядом, то они должны быть совершенно ничтожны. Но каковы ограничения сверху на эти величины? На этот вопрос должна ответить экспериментальная физика (вкупе с астрофизическими наблюдениями, которые тут играют главную роль). Опуская подробности, укажем только, что современное состояние этого анализа отражено на странице Particle Data Group со свойствами фотона .

На удивление, эта страница не содержит еще одной важной величины - времени жизни фотона . Ведь если фотону разрешено иметь ненулевую массу, пусть даже и ничтожно маленькую, то он может распадаться на еще более легкие частицы, скажем на пару нейтрино, если легчайшие нейтрино окажутся безмассовы. То есть фотон станет нестабильной частицей, а всякая нестабильная частица характеризуется своим средним временем жизни.

Во избежание недопонимания сразу подчеркнем две вещи. Во-первых, речь идет о времени жизни до спонтанного распада у свободного фотона в вакууме. В обычных условиях фотоны, конечно, могут жить очень недолго - от момента испускания до момента поглощения. Но это не относится к свойствам самого фотона, это просто те ограниченные внешние условия, в которые поместили фотон. Нас же интересует именно «личное» время жизни фотона как уединенной, ничем не поглощенной частицы.

Во-вторых, договоримся о терминологии. Численная характеристика «время жизни» выражает длительность существования частицы в системе покоя . В другой системе отсчета, в которой частица движется с релятивистской скоростью, время до распада увеличивается за счет эффекта замедления времени - одного из базовых эффектов теории относительности. Скажем, когда говорится, что у мюона время жизни 2 микросекунды, имеется в виду именно покоящийся мюон; мюоны высокой энергии живут намного дольше, и именно поэтому до поверхности Земли долетают мюоны, образовавшиеся где-то в верхних слоях атмосферы.

Итак, предположим, что фотоны не безмассовы, а обладают массой, равной допустимой на сегодня верхней границе по данным Particle Data Group . Теперь, если перебрать известные сейчас астрофизические данные, можно найти «самый древний свет» - то есть фотоны, которые летели до нас дольше всех и тем не менее не распались. Постарайтесь найти эти данные самостоятельно.

Задача

Подсказка 1

Самый древний свет — это электромагнитное излучение, испущенное раньше всех других типов излучения из тех, что мы можем сейчас наблюдать. Примерно известно, сколько времени летели фотоны этого света, хорошо известна их энергия, и этого достаточно, чтобы найти искомое время жизни.

Подсказка 2

Самым древним светом является реликтовое микроволновое излучение. За последние десятилетия несколько специальных спутников — РЕЛИКТ-1, COBE, WMAP, Planck — провели тщательные измерения этого излучения и составили его подробные карты. Это излучения лежит в определенном диапазоне длин волн, а значит, его фотоны обладают энергией в определенном диапазоне.

После этого остается понять, во сколько раз эта энергия больше предполагаемой массы фотона и как релятивистское замедление времени зависит от энергии частицы.

Решение

Характеристики реликтового излучения легко находятся в сети (см., например, Википедию , заметку про WMAP , астрокартинку дня про результаты Planck , информацию с плаката про ЭМ-излучение). Реликтовое излучение представляет собой «снимок Вселенной», когда прошло всего 380 тыс. лет после Большого взрыва, что много меньше нынешнего возраста Вселенной (13,8 млрд лет). Поэтому «возраст» этого света можно принять равным возрасту Вселенной, то есть примерно 10 10 лет (в оценках по порядку величины численными коэффициентами порядка 2 можно пренебрегать).

За эти 10 10 лет свет не только совсем не распался, но даже и близко не начал распадаться . Действительно, спутники WMAP и Planck не просто увидели реликтовое излучение, они измерили его с точностью 10 –4 , и именно с такой точностью его сложный спектр вполне согласуется с современными космологическими моделями. Поэтому можно смело считать, что время жизни реликтовых микроволновых фотонов как минимум на 4 порядка больше этого значения, то есть не меньше 10 14 лет.

Его нынешняя температура составляет примерно 2,7 кельвина, что соответствует энергии одного фотона примерно 0,23 мэВ (миллиэлектронвольт). Конечно, раньше эта температура была выше - по мере расширения Вселенной это излучение остывает. Для грубой оценки можно принять, что средняя температура за всё время составляла примерно 1 мэВ. Если гипотетическую массу (а точнее, энергию покоя mc 2) фотона принять равной 10 –18 эВ, то релятивистский параметр γ = E/mc 2 ≈ 10 15 .

Поскольку время существования нестабильной релятивистской частицы равно t = γ t 0 , где t 0 и есть искомое собственное время жизни частицы, мы приходим к результату: фотон с такой массой должен обладать временем жизни t 0 больше одного месяца .

Послесловие

Предложенная здесь задача была, по-видимому, впервые детально проанализирована в статье, опубликованной в журнале Physical Review Letters буквально несколько дней назад (How Stable is the Photon? // Phys.Rev.Lett. 111, 021801 (2013); полный текст доступен в архиве епринтов arXiv:1304.2821). Более аккуратный расчет показал, что вместо 1 месяца ограничение можно увеличить до 3 лет, а также привел дополнительно к независимому ограничению на массу фотона. На рис. 2 показан окончательный результат этой статьи — область исключенных и разрешенных значений массы и времени жизни в логарифмическом масштабе.

Возможно, полученный ответ может поначалу удивить: как же так, ведь мы точно знаем, что ЭМ-излучение живет намного дольше! Но не стоит забывать, что все виды излучения, которые мы до сих пор детектировали, даже низкочастотные радиоволны, имеют энергию фотона на несколько порядков больше его гипотетической массы. Для того, чтобы такие фотоны стали нерелятивистскими, нужно уменьшить эту энергию до 10 -18 эВ, что отвечает ЭМ-волне с периодом четверть часа и длиной волны в треть миллиарда километров. Вот если мы сумеем зарегистрировать ЭМ-волны такого типа, причем гарантированно приходящие к нам не из окрестностей солнечной системы и даже не от ближайших звезд, а из глубокого космоса, тогда эту оценку можно будет существенно улучшить.

Другой важный момент: стоит помнить, что эта оценка относится к выбранной массе 10 -18 эВ. Если взять еще меньшую массу, то γ -фактор станет еще больше, а значит, нижняя граница на время жизни фотона уменьшится . Например, при массе 10 -26 эВ собственное время жизни фотона может вообще составлять 1 секунду, и это не будет противоречить никаким экспериментальным данным! Правда, в этом случае вылезают уже чисто теоретические сложности: «ширина» фотона как резонанса становится намного больше его массы, поэтому все фотоны, даже испущенные на краю Вселенной, уже потребуется считать виртуальными, а не реальными частицами. Но экспериментаторов такие детали обычно не беспокоят.

На самом деле, в нашем решении мы закрыли глаза на большое число тонких эффектов, которые обсуждались в статье в Phys. Rev. Lett . Например, наличие у фотонов массы может привести к иному закону остывания фотонного газа в расширяющейся Вселенной. Правда, полученные ограничения на массу (они видны на рис. 2) оказались намного слабее уже имевшихся. Другой эффект состоит в том, что, когда свет летит не в вакууме, а в газе или плазме, он перестает быть свободным фотоном и приобретает некую эффективную массу. Космическая плазма, конечно, очень разрежена, поэтому и масса получится мизерной, но вполне вероятно, что она может оказаться и побольше того значения, которое мы использовали. Точного анализа пока не проведено, и если это окажется так, то оценку придется пересмотреть.

8.1. Энергия электромагнитного поля

Состояние электромагнитного поля в резонаторе можно задать, перечислив состояния всех соответствующих допустимым модам излучения полевых осцилляторов (8.1). Независимость друг от друга полевых осцилляторов позволяет представить состояние всего электромагнитного поля в виде произведения состояний каждой его моды. Полная энергия оказывается равной сумме энергий, находящихся в каждой из мод (8.2). Энергия каждой моды может принимать дискретные значения, отстоящие друг от друга на величину, равную энергии планковского кванта (8.3). Это свойство позволяет формально сопоставить каждому состоянию полевого осциллятора набор частиц, каждая из которых обладает энергией (8.3), число которых равно номеру этого состояния. Такие частицы принято называть фотонами .

Определенные трудности в теории вызывает тот факт, что энергии нижних состояний полевых осцилляторов оказываются отличными от нуля. Т.о. любая мода из бесконечного набора даже в отсутствии в ней реально наблюдаемых фотонов обладает энергией, равной половине энергии планковского кванта. Полная же энергия вакуума, даже в случае отсутствия в нем излучения оказывается бесконечно большой. В рассматриваемом случае представляется малоприемлемым часто используемый в физике способ переопределения энергии системы за счет сдвига начального уровня ее отсчета. Происхождение отличного от нуля значения энергии нижнего состояния имеет глубокий физический смысл, поскольку проистекает из правила коммутации операторов обобщенной координаты и импульса. Именно это свойство операторов в конечном итоге приводит к правильному описанию эффекта спонтанного излучения, не объясненного «классической» квантовой механикой и ряда других «тонких» эффектов, наблюдаемых на эксперименте. Следуя введенной терминологии, соответствующие «половинкам фотонов» нижние состояния можно назвать темновыми фотонами или нуль-колебаниями электромагнитного вакуума . Вместе с тем следует отметить, что полученный результат в виде бесконечно большой энергии элдектромагнитного вакуума,по-видимому, является физически бессмысленным и свидетельствует о внутренней противоречивости и незавершенности имеющейся на сегодняшний день квантовой релятивистской теории излучения.

Задание состояния электромагнитного поля в резонаторе в виде совокупности невзаимодействующих друг с другом полевых осцилляторов.

Энергия электромагнитного поля как сумма энергий полевых осцилляторов.

Энергия фотона, соответствующего моде излучения с волновым вектором k .

8.2. Импульс электромагнитного поля

Фотон, как ультрарелятивистская частица, помимо энергии должен обладать и импульсом , связанным с энергией стандартным релятивистским соотношением (8.4). Ожидаемое выражение для импульса фотона может быть действительно получено в рамках принятого в квантовой электродинамике формализма полевых осцилляторов. Явный вид оператора импульса (8.5) записывается естественным образом по аналогии с классическим выражением и с учетом ранее полученных выражений для операторов векторного потенциала и поля (7.29 - 7.30) может быть выражен через операторы обобщенных координат и импульсов полевых осцилляторов (8.6). Из последнего соотношения непосредственно следует ожидаемое из не квантовой релятивистской теории «правильное» выражение для импульса электромагнитного поля (8.7). В отличие от рассмотренной противоречивой ситуации с энергией, в случае импульса электромагнитного поля из-за векторного характера входящих в сумму слагаемых полный импульс не содержащего электромагнитного излучения пространства в определенном смысле оказывается равным нулю.

Квадрат четырехвектора энергии-импульса для фотона и выражение для импульса фотона.

Оператор импульса электромагнитного поля в резонаторе.

Оператор импульса электромагнитного поля в виде разложения на осцилляторы.

Импульс квантованного электромагнитного поля.

8.3. Поляризация излучения и «спин» фотона

Если в рамках классической физики понятие поляризации электромагнитных волн не требует особых комментариев, то выяснение смысла этой характеристики в случае корпускулярного описания представляется весьма содержательным.

Даже на языке классической физики может быть приведен ряд соображений, указывающих на тесную связь поляризации излучения со спином фотона, который в случае движущейся со скоростью света частицы обычно называют спиральностью . Для выяснения связи поляризации излучения с переносимым им моментом импульса достаточно рассмотреть процесс взаимодействия атома Томсона с излучением круговой поляризации. При установившемся вынужденном вращении квазиупругого электрона с частотой вращения электрического поля волны угол между векторами скорости электрона и напряженности поля остается постоянным. При этом скорость передачи энергии излучения системе оказывается пропорциональной скорости передачи ей момента импульса (8.8). Подстановка в полученное выражение планковской формулы для энергии излучения приводит к предположению о том, чтоz-проекция момента импульса фотона с круговой поляризацией может иметь величину, равную постоянной Планка. В этом случае кажется логичным приписать фотону собственный момент импульса равный по величине одной постоянной Планка.

К аналогичному выводу приводят и другие соображения, основанные на связи величины спина системы с трансформационными свойствами состояний поляризации излучения при вращении системы координат. Так очевидно, что при повороте системы координат вокруг оси z, направление которой совпадает с направлением распространения плоской монохроматической волны, два возможных состояния ее линейной поляризации преобразуются друг через друга (8.9). В случае же состояний круговой поляризации (8.10) поворот системы координат приводит лишь к их умножению на фазовый множитель (8.11) в точности совпадающий с аналогичным множителем, возникающим при поворотах вокруг оси z систем с единичным спином. Именно это свойство состояний поляризации позволяет приписать фотону плоской монохроматической волны круговой поляризации собственный момент импульса, равный единице.

Приписывание фотону единичного спина носит несколько условный характер, поскольку спином принято называть внутренний момент импульса частицы в тех системах отсчета, относительно которых рассматриваемая частица остается неподвижной. Именно отсутствие системы отсчета, в которой частица может покоиться, в конечном итоге приводит к запрету существования фотонов в сферически-симметричных состояниях. Именно по этой причине состояние |S=1, M S =0> случае фотонов оказываются нереализуемыми в природе.

Скорости передачи энергии и момента импульса атому Томсона электромагнитным излучением круговой поляризации и связь между моментом импульса и энергией классического электромагнитного излучения.

Преобразование состояний линейной поляризации при вращении системы координат.

Связь между состояниями круговой и линейной поляризацией

Преобразование состояний круговой поляризации излучения при вращении системы координат.

8.4. Полный момент и четность фотона

При решении задач взаимодействия излучения с атомом электромагнитное поле удобнее рассматривать как совокупность сферических волн, являющихся решением уравнения Д’Аламбера, записанным в сферических координатах (8.12). В некотором смысле это уравнение для векторного потенциала можно рассматривать как аналог уравнения Шредингера для электрона (2.4 - 2.5). Оба уравнения имеют сходную структуру и содержат квадрат оператора момента количества движения. Отличие состоит лишь в отсутствии слагаемого, содержащего кулоновский потенциал 9фотон является электрически нейтральной частицей) и в векторном характере искомого решения. Последнее требует некоторого уточнения: строго говоря, волновая функция электрона в классическом уравнении Шредингера не является скаляром, поскольку содержит в себе спиновую часть, отвечающую двум возможным состояниям собственного момента количества движения электрона (спин 1/2). В этом смысле различие между векторным потенциалом («волновой функцией») для фотона и «скалярной» (а реально - двухкомпонентной) волновой функцией электрона состоит только в величине спина сравниваемых элементарных частиц. Следует еще раз напомнить, что величина спина характеризует число состояний неподвижного объекта, преобразующихся друг через друга при вращениях координат.

Как и в случае решения задачи о движении электрона в кулоновском поле ядра стационарное (т.е. зависящее от времени по гармоническому закону) решение этого уравнения разумно искать в виде произведения двух функций: радиальной и угловой (8.13). В качестве последней следует использовать любую из ранее введенных шаровых функций (5.7), составляющих полный набор собственных функцией оператора квадрата момента количества движения. Построенное решение (8.13) содержит два множителя, преобразующиеся при вращениях системы координат: шаровые функции и вектор поляризации. Формально, по аналогии с задачей о электроне в атоме водорода, порядку l шаровой функции Y lm хочется сопоставить момент импульса фотона, а вектору поляризации - равный единице спин фотона (частицы с единичным спином ведут себя при вращениях подобно классическому вектору). Полный же момент фотона (как и в случае электрона) должен представлять сумму орбитального и спинового.

К сожалению, приведенная аналогия не является вполне удовлетворительнойиз-заравенства нулю массы покоя фотона. Эта очевидная особенность фотона делает невозможным существование системы координат, в которой бы он покоился. В результате понятие спина, традиционно определяемое как собственный момент количества движения покоящейся частицы, для фотона теряет смысл. Так же оказывается невозможным и корректное определение спина фотона как характеристики числа состояний, преобразующихся друг через друга при поворотах: обязательное для фотона состояние движение со скоростью света всегда выделяет одно направление в пространстве, изменение которого при повороте означало бы изменение волнового вектора фотона и, следовательно, номер соответствующей ему моды. Невозможность корректного разделения орбитального и спинового моментов фотона можно пояснить и на еще одном языке: условие поперечности для электромагнитных волн по существу накладывает дополнительное ограничение на взаимную ориентацию волнового вектора и вектора поляризации. В результате «орбитальное» и «спиновое» движение фотона не могут считаться независимыми. Т.о. в случае фотона оказывается возможным говорить только о полном моменте импульса частицы.

Помимо энергии, импульса и полного момента фотону может быть приписана определенная четность , характеризующая поведение волновой функции при инверсии координат. Указанная операции изменяет знак обычного трехмерного пространственного вектора на противоположный. Шаровая функция с индексами l, m=l при инверсии ведет себя подобно 2l - положительно направленным спинорам, каждая пара которых подобны пространственному вектору (8.14). Т.о. четность такой функции оказывается равной (-1) l . При поворотах системы координат шаровая функция с указанными индексами преобразуется через набор всевозможных шаровых функций порядка l . Поскольку в случае отсутствия слабых взаимодействий оператор инверсии с гамильтонианом системы, он коммутирует и с входящим в выражение для гамильтониана оператором квадрата момента импульса, а следовательно - и со связанным с ним оператором поворота. В результате оказывается, что весь набор шаровых функций порядка l обладает одинаковой четностью.

Из-затого, что волновая функция фотона носит векторный характер (т.е. содержит вектор поляризации, четность которого отрицательна), полная четность фотона оказывается равной (-1) l+1 .

8.5. Векторная частицы в состояниях с различными целочисленными моментами импульса

Для построения классификации фотонов по моменту и четности целесообразно решить вспомогательную задачу нахождения допустимых значений полных моментов нерелятивистской векторной частицы с заданным орбитальным моментом. В качестве простейшего примера может быть рассмотрена векторная частица в р-состоянии(с орбитальным моментом l=1 ). Базисные состояния такой системы могут быть заданы в виде произведений состояний орбитального и спинового моментов (8.15). Такой базис разумно называть набором состояний с определенными проекциями орбитального и спинового моментов. Проекция полного момента системы на вертикальную ось по-прежнему определяется исходя из результата действия на состояние оператора поворота вокруг оси z. Состоянию с равными единице проекциями на ось z орбитального и спинового моментов может быть так же отнесено к состоянию нового базиса с полным моментом j=2 и его максимально возможной проекцией M j =+2 (8.16). Остальные 4 состояния из группы с j=2 представляют собой симметричные линейные комбинации исходных базисных состояний (8.15) с одинаковыми суммами проекций орбитального и спинового моментов (8.17). В последнем утверждении легко убедиться, подействовав оператором произвольного поворота на состояние |j=2, m=2> , в результате которого указанное состояние должно превратиться в линейную комбинацию группы новых базисных состояний вида |j=2,M j > (8.18). Всей этой группе соответствуют состояния, представляющие собой полностью симметричны линейные комбинации всех мыслимых комбинаций из четырех спиноров, взятых с одинаковыми весовыми множителями. В свою очередь, из этих линейных комбинаций легко составить состояния исходного базиса с определенными проекциями обоих моментов.

Оставшаяся антисимметричные линейные комбинации состояний старого базиса с |M|

Т.о. из заданного набора 9 произведений состояний с определенными проекциями моментов удалось построить такое же число новых базисных состояний с определенным значением полного момента и его проекции. В полном соответствии с квантовомеханическими правилами сложения моментов множество вновь построенных состояний содержит суммарные моменты, лежащие в интервале от |l-s| до l+s.

8.6. Классификация фотонов

Перечисленные по алгоритму (8.15) набор состояний с полным моментом для векторной частицы оказывается избыточным для фотона, не имеющего «продольных» состояний с направленным по волновому вектору вектором поляризации. Для выявления «лишних» состояний продольной поляризации полезно установить их четность. Для того, чтобы физические свойства гипотетического «продольного» фотона оставались неизменными, производимые над ним преобразования симметрии не должны затрагивать волнового вектора (и параллельного ему вектора поляризации). Т.о. оказываются возможными только вращения вокруг волнового вектора, в результате которых объект должен проявлять свойства симметрии, соответствующие его полному моменту j . Т.о. координатная часть волновой функции фотона должна содержать шаровую функцию порядка j. При инверсии координат, не затрагивающей направление вектора k , шаровая функция полностью определяет четность всей волновой функции фотона - (-1) j . Именно состояние с такой четностью оказывается «лишним» и должно быть вычеркнуто их полного списка возможных состояний фотонов:

Четность = (-1) (-1) l

Четность= F(j)

Классификационное название

Электрический дипольный фотон

Магнитный дипольный фотон.

Продольное состояние (не сущ-т).

Электрический квадрупольный фотон.

Магнитный квадрупольный фотон.

Продольное состояние (не сущ-т)

Фотон. Строение фотона. Принцип перемещения.

Часть 1. Исходные данные.

Часть 1. Исходные данные.

1.1. Фотон - это элементарная частица, квант электромагнитного излучения.

1.2. Фотон не может быть разделен на несколько частей и не распадается спонтанно в вакууме.

1.3. Фотон является истинно электронейтральной частицей. Скорость перемещения (движения) фотона в вакууме равна «с».

1.4. Свет представляет собой поток локализованных частиц - фотонов.

1.5 . Фотоны излучаются во многих природных процессах, например: при движении заряженных частиц с ускорением (тормозное, синхротронное, циклотронное излучения) или при переходе электрона из возбуждённого состояния в состояние с меньшей энергией. Это происходит в результате основного фундаментального превращения в Природе - превращения кинетической энергии заряженной частицы в электромагнитную (и наоборот).

1.6. Фотону свойственен корпускулярно-волновой дуализм:

С одной стороны фотоны демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной волны фотона;

С другой стороны фотон ведет себя как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами) или считаются точечными (электрон).

1.7. Учитывая тот факт, что одиночные фотоны демонстрирует свойства волны, вполне достоверно можно утверждать, что фотон представляет собой «миниволну» (отдельный, компактный«кусочек» волны). При этом должны учитываться следующие свойства волн:

а) э лектромагнитные волны(и фотон) - это поперечные волны, в которых векторы напряженности электрических (E) и магнитных (H) полей колеблются перпендикулярно направлению распространения волны.Электромагнитные волны (фотон) можно передать от источника к приёмнику, в том числе и через вакуум. Им не требуется среда для своего распространения.

б) половина энергии электромагнитных волн (и фотона) является магнитной.

в) для характеристики интенсивности волнового процесса используют три параметра: амплитуда волнового процесса, плотность энергии волнового процесса и плотность потока энергии.

1.8. Кроме того, при рассмотрении схемы строения фотона и принципа его перемещения были учтены следующие данные:

а) излучение фотона практически проходит за период времени порядка 10 -7 сек - 10 -15 сек. За этот период электромагнитное поле фотона возрастает от нуля до максимума и вновь падает до нуля. См. рис.1.

б) график изменения поля фотона никак не может быть куском обрезанной синусоиды, т.к. в местах обрезки возникали бы бесконечные силы;

в) поскольку частота электромагнитной волны - это величина, которая наблюдается в опытах, то эту же частоту (и длину волны) можно приписать и отдельному фотону. Поэтому параметры фотона, как и волны, описываются формулой E = h* f , где h - постоянная Планка, которая связывает величину энергии фотона с его частотой (f ).

Рис. 1. Фотон является материальной частицей и представляет собой компактный (имеющий начало и конец), неделимый «кусочек» волны, у которой электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля. Магнитные поля условно не показаны.

Часть 2. Основные принципы строения фотона.

2.1. Практически во всех статьях по электромагнитным волнам (фотонам) на рисунках описывается и графическипоказывается волна, состоящая из двух полей - электрического и магнитного, например, цитата: «Электромагнитное поле представляет собой совокупность электрического магнитного полей...». Однако существование «двухкомпонентной» электромагнитной волны (и фотона) невозможно по одной простой причине: однокомпонентного электрического и однокомпонентного магнитного поля в электромагнитной волне (фотоне) не существует и существовать не может. Объяснение:

а) существуют теоретические модели-формулы-законы, которые используются для расчетов или определения параметров в идеальных условиях (например - теоретическая модель идеального газа). Это вполне допустимо. Однако для расчетов в реальных условиях в эти формулы вводятся поправочные коэффициенты, которые отражают реальные параметры среды.

б) также существует теоретическая модель под названием «электрическое поле». Для решения теоретических задач это допустимо. Однако реально существуют только два электрических поля: электрическое поле-плюс (№1) и электрическое поле-минус (№2). Субстанции под названием «беззарядовое? электронейтральное? электрическое поле №3» в реальности не существует, и существовать не может. Поэтому, при моделировании реальных условий в теоретической модели под названием «электрическое поле» всегда необходимо учитывать два «поправочных коэффициента» - реальное электрическое поле-плюс и реальное электрическое поле-минус.

в) существует теоретическая модель под названием «магнитное поле». Это вполне допустимо для решения некоторых задач. Однако реально у магнитного поля всегда существуют два магнитных полюса: полюс №1 (N) и полюс №2 (S). Субстанции под названием «бесполюсное? магнитное поле №3» в реальности не существует и существовать не может.Поэтому, при моделировании реальных условий в теоретической модели под названием «магнитное поле» всегда необходимо учитывать два «поправочных коэффициента» - полюс-N и полюс-S.

2.2. Таким образом, учитывая вышесказанное можно сделать вполне однозначный вывод: фотон является компактной (имеющий начало и конец), материальной частицей, у которой материя представляет собой совокупность двух электрических (плюс-минус) и двух магнитных (N-S) полей, способных распространяться от своих источников без затуханий (в вакууме) на сколь угодно большие расстояния. См. рис.2.



Рис.2. Фотон представляет собой совокупность двух электрических полей (плюс и минус) и двух магнитных полей (N и S). При этом полностью соблюдается общая электронейтральность фотона. В данной работе принимается, что электрическое поле-минус стыкуется с магнитным полем-N, а электрическое поле-плюс стыкуется с магнитным полем-S.

Часть 3. Квант энергии и квант массы.

3.1. С одной стороны фотон представляет собой компактную, неделимую частицу, у которой электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля. То есть фотон имеет вполне реальный линейный размер (начало и конец).

3.2. Однако с другой стороны параметры фотона, как и волны, описываются формулой E = h* f , где h - постоянная Планка (эВ*сек), элементарный квант действия (фундаментальная мировая константа), которая связывает величину энергии фотона с его частотой (f ).

3.3. Это позволяет полагать, что все фотоны состоят из вполне определенного количества (n) «самостоятельных» электронейтральных «усреднённых» элементарных квантов энергии (эВ) с абсолютно одинаковой длиной волны (L ). В этом случае энергия любого фотона равна: Е = е 1 *n, где (е 1 ) - энергия элементарного кванта, (n) - их количество в фотоне. См. рис.3.



Рис.3.

а) «нормальный» фотон (электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля);

б) тот же фотон из «усреднённых» квантов. Можно допустить, что любой фотон состоит из вполне определенного количества абсолютно одинаковых «усреднённых» элементарных квантов энергии;

в) элементарный «усреднённый» квант энергии фотона. Элементарный квант энергии (размерность - эВ) абсолютно одинаков для всех электромагнитных волн всех диапазонов и аналогичен элементарному кванту действия Планка, (размерность - эВ*сек). В этом случае: Е (эВ) = h* f = е 1 *n.

3.4. Материя фотона. Фотоны излучаются в результате основного фундаментального превращения в Природе - превращение кинетической энергии заряженной частицы в электромагнитную и наоборот - превращение электромагнитной энергии фотонов в кинетическую энергию заряженной частицы. Однако кинетическая энергия нематериальна, а электромагнитная энергия фотона обладает всеми свойствами материи. Таким образом: в результате основного фундаментального превращения в Природе нематериальная кинетическая энергия заряженной частицы преобразуется в энергию электрических и магнитных полей фотона, который обладает вполне реальными свойствами материи: импульсом, скоростью, массой и др. характеристиками. Поскольку фотон материален, то материальны и все составляющие его части. То есть: элементарный квант энергии автоматически является элементарным квантом массы.

3.5. Любой фотон состоит из вполне определенного количества «самостоятельных» электронейтральных элементарных квантов энергии. И рассмотрение схемы строения элементарного кванта показывает, что:

а) элементарный квант невозможно разделить на две равные части, поскольку это автоматически будет являться нарушением закона сохранения заряда;

б) от элементарного кванта также невозможно «отрезать» более мелкую часть, поскольку это автоматически приведет к изменению значения постоянной Планка (фундаментальной константы) для этого кванта.

3.6. Следовательно:

Первое. Превращение электромагнитной энергии фотонов в кинетическую энергию заряженной частицы не может быть непрерывной функцией - электромагнитная энергия может превращаться в кинетическую энергию частиц (и наоборот) только при значениях энергии кратных одному элементарному кванту энергии.

Второе. Поскольку оболочки кварков, протонов, нейтронов и др. частиц представляют собой уплотнённую электронейтральную материю фотонов, то массы этих оболочек также имеет значения, кратные элементарному кванту массы.

3.7. Примечание: тем не менее, разделение элементарных квантов на две абсолютно равные части (положительную и отрицательную) вполне возможно (и происходит) при образовании электрон-позитронных пар. В этом случае масса электрона и позитрона имеет значения, кратные половине элементарного кванта массы (см. « Электрон. Образование и строение электрона. Магнитный монополь электрона»).

Часть 4. Основные принципы перемещения фотона.

4.1. Перемещение материального фотона-частицы может осуществляться только двумя способами:

Вариант-1: фотон перемещается по инерции;

Вариант-2: фотон является самодвижущейся частицей.

4.2. По неизвестным причинам, именно инерционное движение электромагнитных волн (и фотонов) либо подразумевается, либо упоминается и графически показывается практически во всех статьях по электромагнитным волнам, например: Wikipedia. Electromagnetic radiation. English. См. рис.4.


Рис.4. Пример инерционного перемещения фотона (Wikipedia. Electromagnetic radiation). Фотон перемещается мимо наблюдателя слева направо со скоростью V = «с». При этом все лепестки синусоиды не меняют своих параметров, то есть: в системе отсчёта фотона они абсолютно неподвижны.

4.3. Однако инерционное движение фотона невозможно, например, по следующей причине: при прохождении фотона сквозь препятствие (стекло) его скорость уменьшается, но после прохождения препятствия (одного или нескольких) фотон вновь «мгновенно» и восстанавливает свою скорость до «с» = const. При инерциальном движении такое самостоятельное восстановление скорости невозможно.

4.4. «Мгновенный» набор скорости фотоном (до «с» = const) после прохождения препятствия возможен только при условии, если сам фотон является самодвижущейся частицей. При этом механизмом самопередвижения фотона может являться только переполюсовка имеющихся в наличии электрических (плюс и минус) и магнитных (N и S) полей с одновременным смещением фотона на полпериода, то есть с удвоенной частотой (2* f ). См. рис.5.


Рис.5. Схема перемещения фотона за счёт переполюсовки полей. «Фрагмент» - последовательность переполюсовки поля-плюс.

4.5. Объяснение механизма перемещения фотона основывалось на следующих данных:

а) электромагнитное поле фотона представляет собой совокупность переменных электрических (плюс-минус) и магнитных (N и S) полей;

б) электрические и магнитные поля фотона не могут исчезнуть - они могут только превращаться друг в друга. Порождение магнитного поля переменным электрическим полем является фундаментальным явлением природы;

в) магнитное поле появляется только при наличии изменяющегося во времени электрического поля и наоборот (всякое изменение электрического поля возбуждает магнитное поле и, в свою очередь, изменение магнитного поля возбуждает поле электрическое). Поэтому магнитные поля фотона могут возникнуть только при наличии у фотона переменных по знаку иизменяющихся во времени электрических полей (в системе отсчёта фотона).

4.6. При объяснении механизма переполюсовки фотона рассматривались следующие варианты:

а) наличие свободного пространства впереди фотона. Фотон представляет собой компактный, неделимый «кусочек» волны в виде синусоиды, у которой электромагнитные поля возрастает от нуля до некоторого максимума и вновь падают до нуля. То есть: «тело» фотона имеет вполне реальную геометрическую длину (начало и конец). Движение фотона происходит за счёт перемещения фотона на расстояние одного полупериода (1/2L) за каждый акт переполюсовки. И это перемещение всегда может происходить только в одну сторону (вперед), где перед фотоном имеется в наличии свободное пространство;

б) «Борьба противоположностей». Электромагнитное поле фотона представляет собой совокупность переменных электрических (плюс-минус) и магнитных (N и S) полей. В данной работе принимается, что электрическое поле-минус стыкуется с магнитным полем-N, а электрическое поле-плюс стыкуется с магнитным полем-S. Но в этом случае возникает постоянное (и законное) стремление магнитных полей N и S состыковаться друг с другом, то есть создать полноценный «двухполюсной магнит». Для этого одно из магнитных полей обязано сдвинуться на полпериода. Однако магнитные и электрическими поля «намертво» связаны между собой, и всякая попытка магнитного поля «освободится» от электрического поля «мгновенно» приводит к ответной реакции противодействия - вызывает переполюсовку (переброску) всех полей и их автоматическое смещение на полпериода.

4.7. Поскольку других вариантов объяснения механизма самопередвижения фотона не просматривается, то перемещение фотона за счёт переполюсовки полей, по-видимому, является единственным решением проблемы. Ибо только режим переполюсовки позволяет поддерживать режим самодвижения фотона и одновременно обеспечить соблюдение фундаментального закона Природы - порождение магнитного поля при наличии переменного по знаку и меняющегося во времени электрического поля (и наоборот). Предложенные варианты механизма переполюсовки (причин и последовательности) требуют дополнительных проработок, которые в данной работе не могут быть представлены. Тем не менее, приведенные объяснения являются приемлемым выходом из создавшейся ситуации в решении проблемы постоянства скорости света, поскольку позволяют с той или иной степенью достоверности объяснить механизм самопередвижения фотона.

4.8. Скорость фотона. Скорость (с) электромагнитных волн (фотонов) в вакууме, их частота (f ) и длина волны (L ) жестко связаны формулой: с = f * L . Однако при этом следует иметь в виду, что перемещение фотона происходит за счёт одновременной переполюсовки его электрических и магнитных полей, во время которой фотон смещается на расстояние одного полупериода (L/2) за каждый акт переполюсовки, то есть с удвоенной частотой. С учётом этого формула скорости будет иметь вид с =2 f * L /2, что абсолютно идентично основной формуле: с = f * L .

5. Таким образом:

5.1. Фотон является локализованной (компактной) материальной частицей, у которой материя представляет собой совокупность двух электрических (плюс и минус) и двух магнитных (N и S) полей, значения которых возрастают от нуля до некоторого максимума и вновь падают до нуля. При этом полностью соблюдается общая электронейтральность фотона.

5.2. В результате основного фундаментального превращения в Природе нематериальная кинетическая энергия заряженной частицы преобразуется в материальную энергию электрических и магнитных полей фотона. Фотон материален и состоит из вполне определенного количества абсолютно одинаковых «усреднённых» элементарных квантов энергии, которые автоматически являются элементарными квантами массы.

5.3. Фотон является самодвижущейся частицей способной перемещаться от своего источник на сколь угодно большие расстояния (в вакууме). Ему не требуется среда для своего перемещения. Движение фотона происходит за счёт переполюсовки переменных электрических (плюс-минус) и магнитных (N и S) полей, во время которой фотон смещается на расстояние одного полупериода за каждый акт переполюсовки.

5.4. В данной работе принимается, что в каждом элементарном кванте электрическое поле-минус стыкуется с магнитным полем-N, а электрическое поле-плюс стыкуется с магнитным полем-S. Другие варианты стыковки полей требуют дополнительных проработок и в данной работе не рассматривались.

По нашей гипотезе заряды электрона и позитрона формируются, когда центральный гравитон, на котором появляется заряд, опоясывается тором. Ось вращения тора проходит через полюса гравитона, и наружная часть его оболочки вращается, либо от северного полюса гравитона к южному полюсу, либо наоборот, генерируя своим вращением, либо заряд электрона, либо заряд позитрона.

Кроме опоясывающего вращения, тор вращается как колесо. Энергия этого вращения генерирует тот или иной цвет электромагнитного спектра.

Тороиды, расположенные внутри электронов и позитронов, мы назвали фотонами.

Кстати, ученые из Вашингтонского университета создали быстродействующую камеру, способную сфотографировать фотоны. Фотография демонстрирует тороидальную модель фотона.

По нашему мнению, квантами электромагнитной волны являются электроны и позитроны, которые определяют длину электромагнитной волны. Фотоны же определяют длину волны самого фотона. Покинувший свой заряд, и потому свободный фотон, генерируют цвет, соответствующей его длине волны. Таким образом, фотон является квантом того или иного цвета, который несёт в себе та, или иная электромагнитная волна.

Фотоны, излучаемые электронами и позитронами, остаются с такой же длиной волны, которую имели во время излучения.

Свободные фотоны, в отличие от электронов и позитронов, не имеют ни электрической, ни магнитной составляющих и потому не имеют способности организовываться в электромагнитные волны. Свободные фотоны распространяются в эфире как неорганизованный в электромагнитную волну поток фотонов.

Электроны с позитронами электромагнитных волн, излучаемые Солнцем, сталкиваясь с атомами и молекулами газов атмосферы, с земной поверхностью, с различными объектами, посредством тормозного излучения, рождают двигающиеся цветовые фотоны, которые, попадая в механизм зрения человека, рисует нам наш разноцветный мир.

Оценка информации


Записи на схожие темы

Папы Иоанна Павла II признала ошибкой и приговор, и сам...клерикалов", т.е. заказ священников! Эйнштейн создал тогда заумную пародию на...света ?! Вращение "фотонов " (или "квантов света ") вокруг своей оси прекрасно объясняет, почему кванты , например, синего света ...

Представлений, например, к теории "световых квантов " Эйнштейна . Однако все его усилия оказались...вопрос: "каков механизм образования фотона , наименьшей частицы света , движущимся электроном?" Среди...м/с для вакуума. Величина ошибки Физо составила всего 4%). «...

Выглядят "кванты света " разных участков спектра! Одни "кванты " имеют...фотоэффекта". Теория Относительности Эйнштейна на Нобелевку не тянула... маматических нагромождений, используя фотонную (квантовую) теорию, ...всё. Это логическая ошибка и измышления шизоватых...



Поделиться