Советский ударный экраноплан «Лунь»: история создания, описание и технические характеристики. «Монстр» против «Пеликана»: Боевые экранопланы

Почему не строят экранопланов гигантов.

1.Введение

2.Что такое экраноплан.

3. Немного истории

4. Так почему же

5. Будут ли они построены

6. Вывод.

7. Источники

1.Введение

Экраноплан - один из перспективных видов транспорта, обладающий уникальными характеристиками. Интерес к нему существует уже несколько десятилетий. Однако, несмотря на ряд выдающихся достижений в области создания больших экранопланов, пока ни один большой экраноплан не дошёл до практического применения. Почему же всё-таки не произошло бума экранопланов, как это произошло с судами на подводных крыльях и судами на воздушной подушке? На этот вопрос я и попытаюсь ответить.

В своей работе я рассматриваю, прежде всего, перспективы создания больших экранопланов. То есть экранопланов массой больше 100 тонн. Объясняется это тем что малые экранопланы уже активно создаются и используются частными фирмами.

3. Что такое экраноплан

Для того что бы ответить на этот вопрос необходимо выяснить, что же такое экраноплан. Экранопланом называют такую разновидность самолёта, которая летает на предельно малых высотах от 1 до 25 метров, используя для этого экранный эффект.

Экранный эффект образуется при полёте самолёта на малой высоте вблизи экранирующей поверхности, коей может быть снег, лед, пустыня, а большинстве случаев вода. Суть экранного эффекта заключается в том, что поток воздуха, отбрасываемый крылом вниз, отражается от экранируемой поверхности и вновь ударяется о крыло, тем самым увеличивая подъёмную силу.

Это позволяет значительно снизить затраты топлива, необходимого для крейсерского полёта. И из этого вытекают главные преимущества экранопланов. Их большая дальность, большая, по меркам кораблей, скорость, низкая высота полёта, скрывающая их от радаров, вездеходность, обусловленная тем, что ударяться воздух может о что угодно. Платой за это становится во первых низкая манёвреенность, обусловленная близостью поверхности, а экраноплану для поворота тоже нужно создавать крен. И большая неустойчивость, которая заставляет либо делать очень широкое треугольное крыло, (так называемая схема Липпиша), либо, устанавливать маленькие крылышки в носу и в хвосте (схема Алексеева), либо делать два больших крыла (Схема Йорга).

Позднее был создан гибрид экраноплана и самолёта, называемый экранолётом. Он, в отличии, от экраноплана может подобно самолёту подниматься на большую высоту и летать вне действия экрана.

Из-за малой высоты полёта и особенностей создания подъёмной силы международная морская организацией и международная организация гражданской авиации разработали специальную классификацию.

Тип А. Непосредственно экраноплан. Это, прежде всего судно, которое сертифицировано для эксплуатации только внутри зоны действия «экранного эффекта». Следовательно, оно подчиняется корабельным требованиям.

Тип В. Судно, которое кратковременно и на ограниченную величину увеличивать высоту полёта за пределы действия «экранного эффекта», но на расстояние от поверхности, не превышающее 150 м (для перелёта через другое судно, препятствие или иных целей). Также подчиняется корабельным требованиям. Максимальная высота такого «перелёта» должна быть меньше, чем минимальная безопасная высота полёта воздушного судна по самолётным требованиям (над морем - 150 м).

Тип С. Этот тип называют экранолётом. Судно, сертифицированное для эксплуатации вне зоны действия «экранного эффекта» при высоте, превосходящей 150 м. Подчиняется корабельным требованиям во всех режимах эксплуатации, кроме «самолётного». В «самолётном» режиме безопасность обеспечивается только самолётными требованиями, с учетом особенностей экранопланов.

4. Немного истории.

Впервые с экранным эффектом столкнулись в двадцатые годы прошлого века. Экранный эффект возникал при посадке самолётов-низкопланов. Самолёт, заходя на посадку, неожиданно переставал снижаться и зависал на одной высоте. Это часто приводило к авариям. Тогда аэродинамика только зарождалась, и авиаторы не могли понять, почему самолёт так себя ведёт. В 30-х годах с появлением аэродинамических труб и стройной теории полёта удалось объяснить появление экранного эффекта. И его попытались использовать. Первым был инженер из далёкой от авиастроения Финляндии Тойво Каарио. Он построил и испытал первый, буксируемый с помощью аэросаней экраноплан. Испытания оказались удачными и он установил на свой аппарат двигатель. Так появился полноценный экраноплан.

В Советском Союзе также велись разработки экранопланов. В частности инженером Гроховским был разработан проект экраноплана амфибии с двумя двигателями, но развития эта идея не получила.


Весьма амбициозные проекты экранопланов существовали в Англии и США, но при их реализации конструкторы столкнулись с массой трудных вопросов. Главными вопросами были: выбор оптимальной аэродинамической компоновки, создание прочных и лёгких антикоррозийных материалов, создание достаточно надёжного и устойчивого к морской воде двигателя. Большинство проектов до реализации не доходило, а те, что доходили, не хотели летать. Военные не нашли идею привлекательной, а фирмы не хотели тратить деньги на рискованные проекты. Так идея экраноплана постепенно заглохла бы, если бы не Александр Липпиш, создатель знаменитой "Кометы" Ме-163. Он смог решить проблему продольной устойчивости, создав используемую до сих пор аэродинамическую схему, получившую название «летающая рыба». В 70-х годах он разработал несколько проектов экранопланов для береговой охраны ФРГ, а его ученик Ханно Фишер даже смог наладить серийный выпуск экранопланов в Австралии.

Впервые по-настоящему гигантские экранопланы начали создавать в СССР в послевоенные годы. Тогда инженер Ростислав Алексеев, получивший Сталинскую премию за создание судов на подводных крыльях, сумел добиться государственного финансирования программы разработки экранопланов. И результат не заставил себя ждать. В 1966 году создаётся знаменитый корабль-макет (КМ), на западе известный как «каспийский монстр».


На тот момент он был самым большим летательным аппаратом в мире с массой 544 тонны.

В 1972 году создаётся "Орлёнок" - первый серийный десантный экраноплан-экранолёт.


Тем временем в ТАНТК им. Бериева, под руководством другого талантливого конструктора Роберта Бартини, создаётся ВВА-14, вертикально взлетающая амфибия.

В 1985 году создаётся экраноплан «Лунь», оснащённый противокорабельными ракетами «Москит».


Но беда приходит, откуда не ждали.

В 1980 году умирает Ростислав Алексеев, на котором держалась вся программа создания экранопланов.
А в 1984 году умирает министр обороны Устинов, поддерживающий строительство экранопланов. Новый министр отказывается от экранопланов в пользу подводных лодок. Затем перестройка и развал СССР, после чего об экранопланах забыли прочно и надолго. В 2011 году министерство обороны отказалось от дальнейшей эксплуатации экранопланов. А уже построенный «Лунь» будет в ближайшее время утилизирован.

Вместе со смертью Ростислава Алексеева умерли и экранопланы гиганты. После его смерти экранопланы гиганты, за исключением «Луня», больше не создавались.

Тем не менее, на этом история экранопланов не закончилась. И от разработок больших перешли к малым. Во второй половине 80-х годов разрабатывается первый гражданский экраноплан «Волга-2», после чего в конце ХХ – начале ХХI века появляется ряд экранопланов и экранолетов таких как «Акваглайд», «Иволга» и другие.


Эти экранопланы разрабатывались, в том числе, и для нужд ФСБ и должны были использоваться для борьбы с браконьерами.

Тем временем, пальма первенства в постройке экранопланов перешла от СССР к КНР. Ещё в 60-е годы, с использованием опыта советских инженеров, было создано несколько проектов экранопланов. А в девяностые годы программа получила большую государственную поддержку и стали появляться целые серии экранопланов, такие как XTW и DY. К сожалению из-за китайской секретности, информации о них крайне мало.

В 2003 году к идее создания экраноплана вернулись в США.


Фирма Boeing разрабатывала экраноплан "Пеликан" для армии США. Он должен был везти груз массой 680 тонн на расстояние в 18500 км и предназначался для скорой переброски войск. Но пока вестей о нём давно не было.

В 2011 году Японскими инженерами был разработан поезд экраноплан.


В отличие от всех других разработок в сфере высокоскоростного наземного транспорта, он использует для движения гладкую поверхность, создать которую гораздо, нежели проложить современную железную дорогу, кроме того, он использует питание от контактной сети, что позволяет значительно повысить его характеристики за счёт снижения массы топлива.

Тем временем в ТАНТК им. Бериева уже много лет ведутся разработки по настоящему гигантских экранопланов-экранолётов, Бе-1000, Бе-2500 и Бе-5000. Но реализации этих проектов ожидать не приходится.


Название

Скорость

Мощность двигателей

Состояние

Назначение

Значение

Экраноплан Каарио

Финляндия

Отсутствуют

Не используется

Опытная машина

Первый летающий экраноплан

Испытания завершены

Опытная машина

Первый экраноплан по схеме Алексеева

Испытания завершены

Опытная машина

Первый экраноплан по схеме Липпиша

10х13000 кгс

Разбился

Опытная машина

Самый большой экраноплан

2х10000 кгс.

Серийное производство завершено

Десантный экраноплан

Первый крупный серийный экраноплан

8х13000 кгс.

Проводится утилизация

Ракетный экраноплан

Первый крупный боевой экраноплан

Производится

Пассажирский экраноплан

Российский экраноплан















7. Так почему же.

На самом деле ответ на этот вопрос лежит на поверхности. Они не так хороши как кажется.

Главным недостатком экранопланов, на мой взгляд является скорость. Скорость в 2-3 раза уступающая современным самолётам. Хотя максимальная скорость экраноплана может достигать 600 км/ч, крейсерская скорость их не превышает 450 км/ч. Современные самолёты способны летать со скоростью более 1000 км/ч, и это остаётся их последнем преимуществом перед поездами, скорость которых уже давно перевалила за 500 км/ч. Если самолёт преодолевает расстояние из Лондона в Нью-Йорк за 6 часов, то экраноплану на это понадобится 14 часов. Именно большое время, необходимое на пересечение океана стало когда-то причиной упадка трансатлантических морских перевозок. Так же транспортные возможности экраноплана сильно ограничивает то что большинство крупных пассажирских аэропортов находится глубоко внутри континента.

В свою очередь для перевозки грузов экраноплан тоже не эффективен. Многие считают что экраноплан выгодно использовать для перевозок высокотарифных грузов, то есть грузов которые нужно возить быстро. Но на самом деле преимущества самолётов более очевидны. Главным препятствием здесь является то что курс экраноплана приходится прокладывать по морю. Возьмём самый вероятный маршрут из Шанхая, морских ворот Азии, в Роттердам, морские ворота Европы. Кратчайшее расстояние между ними 6000 км


Самолёт, летя над сушей, преодолеет это расстояние за 6 часов. Экраноплан в свою очередь вынужден будет идти морем. Кратчайшее расстояние по морю на этом направлении составит 13000 км, но в таком случае экраноплану придётся лететь через северный полюс. И при этом лететь у самой земли, огибая тросы высота которых может достигать десятков метров, и обходя грозовые фронты. а учитывая непогоду, которая и обычные самолёты губит, сможет летать северным путём далеко не каждый день. Таким образом в большинстве случаев лететь придётся южным путём, в обход Азии. А расстояние это будет составлять по самым скромным подсчётам 23000 км. Экраноплан преодолеет это расстояние за 51 час. А учитывая, прохождение Суэцкого канала то все 60 часов. Таким нехитрым образом вся экономичность экраноплана нивелируется тем, что он не может летать, над покрытой горами и лесами сушей.

Причиной же отказа военных от создания экранопланов является то что у военных теоретиков не было и нет до сих пор внятной доктрины наступательного применения экранопланов. Это связано с тем что они, в силу своих особенностей, не могут взаимодействовать ни с самолётами ни с кораблями. Это вынуждает формировать целые соединения из экранопланов, в которых одни экранопланы обеспечивают ПВО, другие артподдержку, третьи противолодочную оборону. Это в свою очередь заставляет строить больше экранопланов, что не каждый военный бюджет потянет.

8. Будут ли они построены

Даже, несмотря на всё я считаю, что есть шанс на то что экраноплан гигант будет построен. Я считаю что есть только одна возможность создать достаточно рентабельный пассажирский экраноплан, это создать экранолёт, который вылетая из обычных аэропортов сможет снижаясь над водой и продолжая движение на экране. Создание такого аппарата потребует прежде всего большой заинтересованности авиаперевозчиков, что в современных кризисных условиях маловероятно.

Так же есть вероятность что военные найдут новое, не известное нам применение экраноплана и создадут большой и мощный экраноплан.

9. Вывод

Преимущества экраноплана в экономичности нивелируются их низкой, по сравнению с самолётами скоростью и невозможностью летать над сушей. Поэтому в ближайшее время не стоит ожидать появления экраноланов гигантов.

В свою очередь малые экранопланы, в связи с освоением

9. Источники

Петров Г. Ф./ Гидросамолеты и экранопланы России: 1910-1999/ 2000 год.

"Моделист конструктор" №9/ 1983

Маскалик, А. И. Экранопланы/ Транспортные суда XXI века 2005 года.

Практическая разработка технологий на основе физического «принципа экрана» привела к созданию гибридов самолета и корабля – уникальных аппаратов («экранопланов» или «экранолетов»), способных двигаться как по воде, так и в воздухе . Нововведение имело закономерный результат – началось применение новых машин для военных и гражданских нужд. Рассмотрим основные вехи истории становления замечательной технологии, сделавшей реальностью летающие крейсеры.

Эффект экрана

В 1920-х годах был открыт физический эффект экрана – явление, которому суждено было изменить представления человечества о движении. Эффект экрана заключается в нарастании подъемной силы летательного аппарата посредством экранирующей способности ровных поверхностей – воды, земли, льда. Набегающий поток воздуха создает подушку за счет повышенного давления под несущей плоскостью, аэродинамическая хорда которой должна быть меньше высоты движения. Проще говоря, экран представляет собой воздушную подушку без гибких ограждений и нагнетателей. Это важное открытие сделало возможным создание аппаратов, скользящих над поверхностью с «самолетными» скоростями при заметной экономии топлива по сравнению с самолетами.

Советский Союз стал родиной первого теоретического обобщения по этой тематике: в 1923 году увидела свет революционная работа Б.Н. Юрьева «Влияние земли на аэродинамические свойства крыла». С практическим же применением экранного эффекта работали уже в 30-е годы – в Финляндии, где пытались создать буксируемые аэросани, и в СССР. Все эти опыты выявили отсутствие нужной технической базы (не существовало достаточно прочных и легких конструкционных материалов), и работы были остановлены.

Положение изменилось лишь в 50-е годы, когда за дело взялся пионер теоретического исследования и практического применения кораблей на подводных крыльях Ростислав Евгеньевич Алексеев. В 1960 году его КБ по СПК (конструкторское бюро по судам на подводных крыльях) начало работы по исследованию эффекта экрана, приведшие к созданию первого в мире экраноплана.

60-е – годы великих свершений

1961 год стал годом первого полета экраноплана. Экспериментальная машина СМ-1 превратилась в самоходную лабораторию по отработке техники пилотажа, сбору эксплуатационной статистики и исследованию конструкционных материалов. Полеты проводились на испытательной станции №1 на Каспии, а для сборочных работ были выделены мощности завода «Красное Сормово» в Горьком (ныне – Нижний Новгород). Испытания серии СМ привели к положительным результатам, и в 1964-65 годах на «Красном Сормове» под руководством генерального конструктора Алексеева и ведущего конструктора Ефимова был построен экраноплан КМ («корабль-макет»). Интересно, что кодовое обозначение этого экраноплана в отчетах НАТО – «Каспийский Монстр» – в точности совпало с официальной советской аббревиатурой.

Корабль и в самом деле был монстром. Его длина достигала почти 100 метров, размах крыла – более 37 метров, взлетная масса – 544 тонны. До выпуска самолета-гиганта Ан-225 «Мрия» КМ оставался самым крупным летательным аппаратом тяжелее воздуха.

Технические характеристики аппарата КМ
Размах крыла 37,60 м Размах хвостового оперения 37 м Высота полета на экране 4-14 м
Длина 92 м Высота 21,80 м Размах крыла 37,60 м
Площадь крыла 662,50 м² Масса пустого экраноплана 240 000 кг Размах хвостового оперения 37 м
Максимальная взлетная масса 544 000 кг Тип двигателя (10 шт.) ТРД ВД-7 Длина 92 м
Тяга 10 х 13000 кгс Максимальная скорость 500 км/ч Высота 21,80 м
Крейсерская скорость 430 км/ч Практическая дальность 1500 км Площадь крыла 662,50 м²
Мореходность 3 балла Максимальная взлетная масса 544 000 кг

Первый полет корабля состоялся в 1966 году. КМ проходил испытания и длительное всестороннее изучение до 1980 года, пока не разбился вследствие ошибки пилота. «Потомков» КМ планировалось использовать в военных целях. Высокая скорость (более 400 км\ч), гарантированное прохождение «ниже радара», возможность лететь над водой и сушей, а также грузоподъемность, позволявшая нести несколько ракетных ПУ, делали эти экранопланы грозным оружием – по крайней мере, в перспективе. Однако проект столкнулся с серьезным противодействием на уровне ведомств, а точнее, с конфликтом между генеральным конструктором Ростиславом Алексеевым и министром судостроительной промышленности Борисом Бутомой. Помимо межличностных отношений, в дело вплеталась конкуренция между флотом, для которого проектировались экранопланы, и ВВС, включая авиационную промышленность.

О сути этих разногласий догадаться легко – экраноплан базировался на море и должен был действовать в составе флота. При этом он являлся летающим аппаратом, и его производство требовало авиационных технологий, ресурсов и мощностей, на которые вполне закономерно претендовали профильные авиационные ведомства. Помимо бюрократической волокиты, проект экраноплана столкнулся с серьезными возражениями практического характера. Основная проблема состояла в том, что высокая скорость аппарата была колоссальной только в сравнении с водными боевыми средствами – любой дозвуковой самолет и любая ракета без проблем догоняли экраноплан. Отсутствие бронирования, серьезных средств ПВО и относительно низкая маневренность превращали его в невероятно дорогую мишень. Тем не менее, экономичность хода, хорошая грузоподъемность и скорость оказались весомой «гирей» на весах в пользу проекта. «Потомки» «Каспийского Монстра» получили путевку в жизнь, а несколько позже аналогичные работы начались и на Западе.

КМ – «Каспийский Монстр»
www.navy.su

Скромные результаты наследников Мессершмитта

Еще в 1961 году в США начались работы над аналогами советского экраноплана. Был разработал ряд проектов, которые так и не вышли на практическую стадию. Разработка этих аппаратов велась и в ФРГ – конструктор и специалист по аэродинамике Александр Липпиш (автор проекта «Мессершмитт-334») разработал ряд экранопланов и, в отличие от американских коллег, сумел создать действующий прототип Х-114 на фирме «Райн Флюгцойгбау».

Аппарат Х-114 был рассчитан на размещение 460 кг полезного груза или пяти пассажиров. Машина отличалась классической самолётной компоновкой – треугольное крыло с вершиной, обращенной к хвостовому оперению. Х-114 стартовал с воды, а значительный угол поперечной несущей поверхности создавал динамическую воздушную подушку во время стартового разбега. Размах крыла экраноплана составлял всего 9 метров – при столь малой грузоподъемности больше не требовалось. Движение аппарата обеспечивал поршневой мотор с винтовым движителем, размещавшийся в кольцевом гнезде. Скорость машины достигала 200 км/ч, автономность при полной загрузке топливом должна была составлять 1000 км, а взлетная масса – 1,35 тонны. Первый полет экраноплана Х-114 состоялся в 1976 году – испытания на Балтике выявили крейсерскую скорость в 150 км\ч. Всего было изготовлено три таких аппарата, переданных в ведение пограничной службы ФРГ. Западные коллеги отстали от Ростислава Алексеева не только хронологически (на 10 лет), но и качественно – советские машины были в 10 раз больше, а значит, имели куда большую боевую ценность.


Экраноплан Х-114
topwar.ru

Тяжелая судьба «Орлёнка»

Развивая идею кораблей КМ, КБ Алексеева разработало и построило десантный экраноплан серии «С», получивший название «Орлёнок». Машина была несколько меньше «Каспийского Монстра», а её корпус выполнялся из аллюминий-магниевого сплава. «Орлёнок» должен был перемещать десант на расстояние до 1500 км со скоростью до 500 км\ч и мог принять 200 морских пехотинцев со всем снаряжением, а также 2 единицы БМП или БТР либо один танк. Для самообороны машина несла спаренную установку пулемета НСВТ «Утес» (калибра 12,7 мм) или КПВ (калибра 14,5 мм).

Испытания «Орлёнка» проходили не вполне гладко. Типичная «болезнь» любого экраноплана – опасность встречи с волной на скорости – сыграла и в этот раз. Первый прототип на полной скорости налетел на волну, которая оторвала кормовое оперение и киль с маршевым двигателем. Несмотря на тяжелые повреждения, машина выдержала и смогла дотянуть до базы за счет увеличенной тяги носовых взлетно-посадочных моторов. Ситуация, идентичная реальному боевому повреждению, подтвердила живучесть и надежность экранопланов.

Всего было изготовлено 5 аппаратов – все они, за исключением разбитого прототипа, были переданы 11-й отдельной авиагруппе. Всего планировалось построить 120 «Орлят», однако в 1984 году умер Д.Ф. Устинов – министр обороны СССР и покровитель проекта. После смерти Устинова производство заморозили, передав сэкономленные средства на нужды флота.

Технические характеристики аппарата «Орлёнок»
Размах крыла, м 31,50 Тяга
Длина, м 58,11 стартовые, кгс 2 х 10500
Высота, м 16,30 маршевый, э. л. с. 1 х 15000
Площадь крыла, м² 304,60

Максимальная скорость,

400
Масса, кг

Крейсерская скорость,

350
пустого снаряженного 120000 Практическая дальность, км 1500
максимальная взлетная 140000 Высота полета на экране, м 2-10
Тип двигателя Практический потолок, м 3000
стартовые 2 ТРД НК-8-4К Экипаж, чел 6-8
маршевый 1 ТВД НК-12МК до 2000 кг
Вооружение спаренный НСВТ 12.7 или КПВ 14.5


Экраноплан «Орлёнок»
Фото из коллекции автора

Ракетный экраноплан – гроза вражеских флотов

Прямым следствием развития экраноплана КМ стал проект 903 «Лунь». Создание десантного экраноплана не раскрывало всех возможностей корабля данного типа, поэтому военные заказчики желали получить ударную модификацию машины, способную нести ракетные ПУ. КБ Алексеева начало работы еще в 70-е годы, и к 1983 году на воду сошел первый прототип ракетного экраноплана.

В отличие от «Орлёнка», аппарат «Лунь» куда больше походил на своего предшественника. Его длина составляла 73 метра, восемь реактивных маршевых двигателей размещались на пилонах в носовой части, машина имела мощное хвостовое оперение с рулями. На «спине» аппарата в аэродинамических наплывах поместились шесть пусковых установок «Москит», и по сей день считающихся самыми эффективными противокорабельными ракетами. Скорость в 500 км\ч позволяла «Луню» атаковать любые корабли противника, и даже авианосные соединения, почти гарантированно уходя из-под ответного удара.

В 1986 году революционная машина начала прохождение испытаний, а в 1990 году ее передали для опытной эксплуатации в 236-й дивизион Каспийской флотилии. К 1991 году флотские испытания триумфально завершились – аппарат показал себя с наилучшей стороны. Но горбачевская перестройка, поставившая крест на другом проекте – Советском Союзе – похоронила массу замечательных разработок, среди которых оказалась и «Лунь».

Экранопланы на службе народного хозяйства

Столкнувшись с трудностями серийной реализации своих проектов, Алексеев предложил гражданские конверсии экранопланов или же сугубо гражданские модели. Так на базе «Луня» был создан проект «Спасатель». Кроме того, проектировались легкие экранопланы и даже экранолеты, способные переходить в «нормальный» самолетный режим с отрывом от аэродинамической подушки. Эти работы послужили основой для целого поколения машин, разрабатываемых и создаваемых по сей день. В этой связи необходимо вспомнить винтомоторный аппарат «Волга-2» 1986 года, его продолжение – экраноплан «Иволга» 1998 года и потрясающе эстетичный «Акваглайд-2» современной разработки. Все эти машины относятся к классу малых кораблей, перевозят 10-16 пассажиров и отличаются чрезвычайной экономичностью.


Экраноплан «Волга-2»
wikipedia.org


Экраноплан «Иволга»
wikipedia.org


Экраноплан «Акваглайд-2»
wikipedia.org

Идеи красного графа

Великий «русский итальянец» Роберто Орос ди Бартини, аристократ с коммунистическими убеждениями, бежавший из Италии с приходом к власти фашистов, в СССР стал одним из ведущих авиаконструкторов, оказавшим влияние на С.П. Королева (который считал его своим учителем) и других великих авиаконструкторов – Яковлева, Мясищева, Ильюшина . В 1960 году Бартини работал над созданием гидросамолета с вертикальным взлетом, и в рамках этого проекта на базе ОКБ имени Г.М. Бериева была разработана модель ВВА-14 – экранолет-торпедоносец. Опытный образец проходил испытания на Азовском море в 1972-76 годах, но со смертью конструктора работы прекратились. В настоящий момент корпус аппарата находится в музее ВВС в Монино.

Технические характеристики аппарата ВВА-14

Размах крыла, м

Тяга, кгс

Длина, м

маршевые

Высота, м

подъёмные

Площадь крыла, м²

Максимальная скорость,

Масса самолёта, кг

Крейсерская скорость, км/ч

пустого

Скорость барражирования, км/ч

максимальная

Практическая дальность, км

Тип двигателя

Практический потолок, м

маршевые

2 ДТРД Д-30М

Экипаж, чел

подъёмные

12 ДТРД РД36-35ПР

Вооружение

2 авиационные торпеды, или 8 авиационных мин ИГМД-500, или 16 авиационных бомб ПЛАБ-250 (максимальная боевая нагрузка – 4 000 кг)


Экранолет-торпедоносец ВВА-14
wikipedia.org

«Нептун» в небе

На основе работ Роберто Бартини в ОКБ имени Бериева был создан проект сверхтяжелого транспортного самолета-амфибии. Самый крупный из проектируемых самолетов такого типа Бе-2500 «Нептун» задумывался как экранолет, то есть, должен был иметь возможность отрыва от аэродинамической подушки с переходом в самолетный режим. Способность использовать эффект экрана делает его универсальной транспортной машиной, не требующей сложного аэродромного оборудования – аппарат способен приводняться у любого берега и действовать с привязкой к инфраструктуре уже имеющихся портов. Мощность, экономичность и грузоподъемность делают «Нептун» великолепным средством для грузоперевозок – точнее, сделали ли бы, так как в настоящий момент работы по его созданию заморожены по причине отсутствия финансирования.


Экранолет Бе-2500 «Нептун» (рисунок проекта)
wikipedia.org

Экология и прогресс Льва Щукина

В 80-е годы советский конструктор Лев Николаевич Щукин создал проект дисковидного безаэродромного аппарата на экранном принципе, получивший название ЭКИП – «Экология и Прогресс». Разработка полностью соответствовала своему громкому имени. Дисковидный фюзеляж машины выполняет функции летающего крыла (а потому чрезвычайно вместителен при сравнительно небольших размерах) а уникальная система управления граничным слоем (обтекание воздухом фюзеляжа) уменьшает сопротивление среды и экономит топливо. Двигатели аппарата (возможна установка двух и более) работают на водно-эмульсионном топливе – смеси низкооктанового бензина, специального эмульгатора и воды (от 10 до 58%), что дает уникальную экономию и экологичность. Скорость машины должна была составлять от 100 до 700 км/ч при высотах от 3 до 11 000 метров.

К 1993 году на базе Саратовского авиационного завода шло строительство двух действующих образцов. Однако, невзирая на официальную поддержку проекта правительством, финансирование было прекращено. В настоящий момент проект передан в ведение международного фонда, что означает увод российских разработок заграницу, наносящий огромный ущерб отечественной авиационной науке.


Экранолет ЭКИП
wikipedia.org

При всем уважении к Алексееву, Липпишу и Бартини, постоянно летать во взлетном режиме плохо, чертовски неэкономично и смертельно опасно. Высота очень полезна для летательного аппарата, здоровья его экипажа и пассажиров.


Все преимущества от экранного эффекта (увеличение подъемной силы при полете в нескольких метрах над поверхностью) нивелируются сопротивлением плотных слоёв атмосферы, усугубленных конструкцией самих “морских монстров”.

Им требуются целые “гирлянды” двигателей для выхода на экранный режим, что влечет за собой очевидные неприятности:

А) Ухудшение аэродинамического облика по сравнению с обычным самолетом (гладкий сигарообразный фюзеляж, всего два или четыре двигателя).

Б) Катастрофический расход топлива во взлетном режиме. Десять реактивных двигателей экраноплана КМ сжигали на старте 30 тонн керосина!

В) Часть двигателей отключалось при выходе на экранный режим и потом возились в качестве бесполезного “балласта”.

Каждый из двигателей “Луня” вместе с топливной арматурой и мотогондолой, весил четыре тонны. И таких у него было восемь штук!

Для расширения возможностей применения экранопланов в штормовую погоду и безопасного взлета с преодолением гидродинамического сопротивления на скоростях в сотни км/час их конструкция должна иметь повышенную прочность, как у корпусов прочности кораблей. Все это прямое нарушение теории ЛА, где идет борьба за каждый килограмм веса.

Плюс фюзеляж с характерными корабельными обводами и громоздкой не убираемой гидролыжей для посадки на воду и сохранения устойчивости на воде.

Да, именно поэтому несчастный “Орленок” при одинаковой грузоподъемности с Ан-12 обладал в 1,5 раза меньшей скоростью и вдвое меньше дальностью полета. Он поднимал всего 20 тонн, при сухой массе его конструкции 120 тонн! Для сравнения: созданный за двадцать лет до него Ан-12 поднимал такой же груз при собственной массе всего 36 тонн.

Именно поэтому экраноплану “Лунь” не хватало боевого радиуса, чтобы пересечь Каспийское море. После чего кто-то предлагает использовать подобные ЭКП для преследования авианосцев в Атлантике. Самим-то не смешно?

Именно поэтому современный ЭКП “Акваглайд” имеет ту же грузоподъемность (400 кг), что и созданная полвека назад Цессна-172. При том “Цессна” почему-то (сюрприз!) довольствуется мотором вдвое меньшей мощности (160 против 326 л.с.) и, разумеется, имеет большую скорость.

Все приведенные цифры вряд ли впечатлят общественность. Фанаты данного вида техники продолжат отрицать очевидное. Как обычно, все неудачи свалят не на объективные трудности, возникающие при полетах в плотных слоях атмосферы , а на отсутствие современных двигателей, материалов и расчетов.

Но если многолетние “расчеты” показывают, что получается глупость, было бы странно продолжать что-то решать.

В будущем появятся новые легкие материалы и экономичные двигатели, но ситуация останется прежней. При внедрении новых технологий самолеты вновь покажут свое полное превосходство над экранопланами.

Любителей экранопланов огорчает сравнение ЭКП с авиацией и кораблями. По их мнению, этот гениальный “монстр” существует в отдельной реальности и в силу своей гениальности не может конкурировать с существующими видами транспорта.

Разные виды транспорта вполне нужно и можно сравнивать, т.к. РЖД вполне себе конкурент Аэрофлоту и борются за одного клиента. И вдруг в эту пару вклинивается какой-нибудь РосЭкраноплан и говорит, что сможет всех возить быстрее, дешевле и безопаснее. Сможет такой РосЭкраноплан отжать существенный кусок рынка перевозок у РЖД или Аэрофлота?


Комментарий от Alex_59

Будучи неспособными привести контраргументы технического характера и объяснить преимущества полета на малых высотах, любители ЭКП ссылаются на другие виды техники. Якобы также испытавшие невыносимые муки при внедрении в жизнь.

Заменить в этой статье экраноплан на “аэроплан”, поменять дату на 1903 год, и будет похоже на правду.

Только правда там другая.

Аэропланам хватило всего 10 лет для превращения в полноценные военно-воздушные силы. Без участия которых стал немыслим любой военный конфликт. Несмотря на убогость конструкции первых “этажерок”, их преимущества оказались так велики, что не смогли оставить никого в стороне.

Едва был создан надежный механизм перекоса винтов - в серию массово пошли вертолеты. “Сикорский R4” активно применялся в боевых действиях с апреля 1944 года. У немцев с 1944 году действовал вертолетоносец “Drache” c эскадрильей противолодочных вертолетов Fl.282 “Колибри”. Высоко оценив машину, командование Кригсмарине немедленно выдало заказ на 1000 таких “пташек”.

Возможность взлетать с любого “пятачка”, зависать на месте и перемещать габаритные грузы на внешней подвеске - свойства вертолетов бесценны.

А что может предложить экраноплан?

Единственное достижение создателей “монстров” было в том, что они, ценой невероятных усилий, все-таки смогли поднять в воздух то, что, по природе своей, летать не должно. Не обращая внимания на затраты, опираясь на бесконечное финансирование со стороны государства.

Вопрос, зачем и для чего создавать сложности на ровном месте, остался без ответа.

Наверное, им было весело гонять по Каспию 500-тонный “сарай” при помощи “гирлянды” из 10 реактивных двигателей от сверхзвуковых бомберов Ту-22.

Неадекватность 10-двигательного “монстра” была очевидна еще на этапе первичных расчетов. Но его все-таки воплотили в металле. И, видимо, эксперимент посчитали успешным. Бредовые идеи “Каспийского монстра” получили развитие в виде экраноплана “Лунь” с восемью двигателями от широкофюзеляжного авиалайнера Ил-86.

Комедия с экранопланами продолжалась более полувека, но длиться вечно она не могла. Получив результаты практической эксплуатации этих машин, в т.ч. 140-, 380- и 540-тонных “монстров”, заказчики из ВМФ, в конце концов, прикрыли бесперспективное направление.

В разы меньшая скорость и грузоподъемность при одинаковом взлетном весе, тройной расход топлива, невозможность полета над сушей - всё, что отличает экраноплан от обычного самолета.

Экраноплан идеален для высадки групп разведчиков - рёв 10 двигателей будет слышен на всем побережье.

О незаметности на радарах при полетах на малой высоте: что мешает проделать тот же трюк бомбардировщику-ракетоносцу? Подкрасться к цели на предельно малой высоте на вдвое большей скорости, чем ЭКП?

Вопреки слухам о безопасности экранопланов, “которые при отказе двигателей сразу садятся на воду”, в реальности они бьются ничуть не реже, чем обычные самолеты. Из восьми крупных “алексеевских” монстров было разбито четыре, в т.ч. две катастрофы с человеческими жертвами.

У пилотов экранопланов не остается спасительных секунд, чтобы оценить обстановку и выровнять машину. Одно неловкое движение штурвалом - и от удара о воду на 400 км/ч обломится хвост. Если взять штурвал немного на себя - отрыв от экрана, потеря устойчивости, утрата контроля над машиной, катастрофа, смерть.

Еще большей проблемой становится управляемость. В силу невозможности совершения виражей с глубоким креном, радиус поворота “Луня” на крейсерской скорости составлял три километра! Теперь самые отчаянные пусть попробуют “пройти” извилину реки на 380-тонном экраноплане. Или уклониться от неожиданно возникшего прямо по курсу буксира.

Единственная сфера применения ЭКП в наши дни - водный аттракцион для избалованных туристов, которым надоело кататься на банане и гидролыжах.

Идея с экранопланом не несет в себе ни малейшего здравого смысла. Полет на сверхмалой высоте способен только ухудшить все, без исключения, характеристики ЛА. Так же, как привязанная к ноге гиря никогда не будет способствовать повышению скорости бега спортсмена. Можно пересчитать еще раз и сделать гирю из карбона, но гиря останется гирей. Главный вопрос - зачем она вообще на ноге, если можно жить без гири.

С экранопланом представляет интересный социальный эксперимент. Как легко люди верят во всевозможную чушь. А при попытке указать на очевидную ошибочность их суждений готовы яростно отстаивать абсурдную точку зрения, обвиняя оппонентов в предательстве национальных интересов.

А потом удивляются, как смогли появиться кашпировские и МММ.

Те, кто призывает к возрождению работ над созданием тяжелых экранопланов, делятся на две категории. Первые - впечатлительные обыватели, которым понравился вид низко летящего “суперсамолета” с десятком ревущих двигателей. Будучи уверены в своей правоте, они не замечают недостатки и на ходу изобретают мнимые достоинства ЭКП.

Вторые представляют группу интересов серьезных людей. Которые все прекрасно понимают, потому пытаются запустить заведомо безрезультатный, оттого длительный и дорогостоящий проект, “распилив” на этом достойное количество средств.

Как утверждает военно-энциклопедический словарь, это транспортно-боевое средство, способное летать на высотах, равных 0.05 - 0.2 ширины крыла вблизи поверхности воды, льда или ровных участков суши с использованием т.н. «эффекта экрана», заключающегося в образовании «воздушной подушки», повышающей подъемную силу его крыла. В журнале «Авиация и Время» («АэроХобби») можно прочитать, что экранопланом является летательный аппарат, предназначенный для скоростного движения вблизи линии раздела двух сред, например воздуха и воды. В книге «Ударные корабли» известный военно-морской эксперт Ю.В. Апальков пишет, что экраноплан является кораблём, использующим экранный эффект (резкое возрастание несущих свойств крыла на малых высотах полета).

По сути, экранный эффект - это та же воздушная подушка, только образуемая путём нагнетания воздуха не специальными устройствами, а набегаюшим потоком. То есть крыло таких аппаратов создаёт подъёмную силу не за счёт разреженного давления над верхней плоскостью (как у «нормальных» самолётов), а за счёт повышенного давления под нижней плоскостью, создать которое возможно только на очень небольших высотах (от нескольких сантиметров до нескольких метров - в зависимости от размеров экраноплана). Эффект экрана связан с тем, что возмущения (рост давления) от крыла достигают земли (воды), отражаются и успевают дойти до крыла. Таким образом, рост давления под крылом и, как следствие, подъемная сила крыла получаются больше, чем у обычного самолета. Кроме того, уменьшается аэродинамическое сопротивление крыла набегающему воздушному потоку.

По конструктивно-технологическому устройству (металл, оборудование, двигатели) и условиям эксплуатации (базирование, взлет-посадка, полет) экраноплан практически ничем не отличается от гидросамолета. Его специфика заключается в способности к устойчивому приэкранному режиму крейсерского полета на высотах порядка 0-5 м. Полет в таком режиме позволяет создавать в 1,5-3 раза более тяжелые аппараты при той же площади крыла и мощности двигателя. Экраноплан обладает возможностью самостабилизации по высоте, крену и тангажу (дифференту), что обеспечивает безопасность полета на предельно малых высотах над гребнями волн. Основным режимом движения является установившийся горизонтальный полет, в котором управляющие воздействия пилота невелики и связаны в основном с поддержанием наивыгоднейших режимов полета на минимально возможной высоте над поверхностью.

Так все-таки, экранопланы - это корабли или самолеты? Во-первых, обычно экраноппан, как было сказано выше, летит на малой высоте, до 10-15 метров. Исходя из этого он все-таки является летательным аппаратом, естественно, отдельного типа, а не кораблём. Хотя у морских ученых есть другое мнение - экраноплан является последней ступенью развития идеи о подъеме корпуса скоростного судна из воды (глиссер, судно на подводных крыльях, судно на воздушной подушке, экраноплан). Во-вторых, полет на малой высоте с использованием экранного эффекта позволяет добиться большей грузоподъемности и экономии топлива по сравнению с обычными летательными аппаратами и большей скорости по сравнению с кораблями, в том числе кораблями на воздушной подушке и подводных крыльях.

Следовательно, в различных ситуациях экраноплан может рассматриваться и как конкурент кораблей, и как конкурент самолетов и вертолетов. В-третьих, экраноплан находится на воде при взлете, посадке, для выполнения необходимых действий (например, спасения людей) и в случае возможных непредвиденных ситуаций. Поэтому использование экранопланов предполагается с обычных аэродромов, как наземных, так и водных (гидроаэродромов), а также, возможно, с кораблей (малые экранопланы ).

Совместным решением морской и авиационной международных организаций экранопланы все же считаются кораблями (это было вызвано сугубо причинами организации движения) и делятся на три типа:

  • Тип А - судно, которое сертифицировано для эксплуатации только внутри зоны действия «экранного эффекта». Такие суда во всех режимах эксплуатации подчиняются морским требованиям
  • Тип В - судно, которое сертифицировано кратковременно и на ограниченную величину увеличивать высоту полета за пределы действия «экранного эффекта», но на расстояние от поверхности, не превышающее 150 м (для перелета через другое судно, препятствие или иных целей). Также подчиняется морским требованиям. Максимальная высота такого «перелета» должна быть меньше, чем минимальная безопасная высота полета воздушного судна по требованиям авиаторов (над морем - 150 м)
  • Тип С - судно, сертифицированное для эксплуатации вне зоны действия «экранного эффекта» при высоте, превосходящей 150 м. Подчиняется морским требованиям во всех режимах эксплуатации, кроме «самолетного». В «самолетном» режиме безопасность обеспечивается только авиационными требованиями, с учетом особенностей экранопланов

Не случайно создание принципиально новых типов судов почти всегда связывают с малым судостроением. Именно на небольших, сравнительно недорогих лодках и катерах удобно проводить эксперименты, причем высокие скорости достигаются при умеренной мощности механической установки. Глиссирующие катера, катамараны, суда на подводных крыльях и воздушной подушке, - все они начинались с малых судов.

Примечательно, что достигнутые успехи получали затем быстрейшее развитие на более крупных судах, дающих больший экономический эффект. Возможно, так будет и с парящими судами - экранопланами, хотя в настоящее время (в стадии экспериментов) их размеры и грузоподъемность невелики. Сейчас трудно говорить о перспективах внедрения экранопланов, но вероятные области их применения можно связать с высокими скоростями и. проходимостью этих аппаратов. Вероятно, будут созданы быстроходные патрульные экранопланы для обширных заболоченных или заросших тростником устьев рек, возможно ими заинтересуются и спортсмены.

С основными принципами конструкции и движения экранопланов, их достоинствами и недостатками, по сравнению с судами других типов, знакомит читателей статья кандидата технических наук Н. И. Белавина.

Уже более ста лет инженеры-кораблестроители, борясь за скорость, стремятся «вытащить судно из воды», поднять его в воздух - среду в 840 раз менее плотную, чем вода. Глиссирование, подводные крылья, воздушная подушка, - таковы ступени развития этой идеи, последнюю из которых занимают экранопланы, т. е. аппараты, использующие при движении эффект повышения давления воздуха под крылом вблизи водной поверхности - экрана. Кстати, экранирующей. поверхностью может быть и земля, поэтому экранопланы, как и суда на воздушной подушке, являются амфибиями: они способны выходить на сушу, преодолевать заболоченные участки, парить над замерзшими водоемами и т. д.

Построенные в настоящее время экранопланы (табл. 1) еще далеки от совершенства. Их сравнительно низкие энерговооруженность и аэродинамические характеристики обеспечивают скорость в пределах 80-150 км/час. Однако специалисты пришли к выводу, что технически вполне осуществимо повышение скорости экранопланов до 350 и более км/час.


Для сравнения возможностей экранопланов и скоростных аппаратов уже привычных нам типов используется такой наглядный показатель как аэрогидродинамическое качество K, представляющее собой отношение подъемной (полезной) силы аппарата к величине сопротивления среды (воды, воздуха) его движению. Напомнйм, что от величины К зависит необходимая для движения с заданной скоростью мощность, а следовательно, и вес энергетической установки и, что еще более важно, расход топлива .

Для глиссеров со скоростями движения 60-80 км/час гидродинамическое качество К=6÷8, для судов на подводных коыльях с близкими скоростями К=10÷12, для судов на воздушной подушке К=12÷16 (с учетом поддува 4-5), а для самолетов аэродинамическое качество K=16÷17. Для существующих экранопланов значения А составляют 19-25, а это значит, например, что для движения с одинаковой скоростью экраноплаиу требуется втрое меньшая мощность, чем глиссеру.

Дело теперь за тем, чтобы практически реализовать это теоретически бесспорное преимущество. Вероятно, пройдет еще немного времени и над нашими реками и озерами появятся летающие катера - экранопланы. И мы не будем удивляться им, как не удивляет нас вид проносящихся мимо судов на крыльях или, тем более, пролетающих самолетов.

Из истории экранопланов

По-видимому, первый из них был создан финским инженером Т. Каарио. Зимой 1932 г. над замерзшей поверхностью озера он испытал экраноплан, буксируемый аэросанями. Позднее, в 1935-1936 гг. Каарио построил усовершенствованный аппарат, уже оборудованный двигателем с воздушным винтом, а в дальнейшем постоянно совершенствовал конструкцию своих экранопланов; последнюю модификацию - «Аэросани № 8» - он испытывал в 1960-1962 гг. (рис. 1).

В 1939 г. американец Д. Уорнер, занимавшийся экспериментами по снижению сопротивления быстроходных катеров, разработал проект катера, оборудованного системой несущих крыльев (рис. 2). Для облегчения выхода на расчетный режим околоэкранного полета предполагалось оборудовать этот аппарат системой поддува с двумя мощными вентиляторами.

В 40-х годах обширные эксперименты выполнялись в Швеции под руководством И. Троенга. Были построены два экраноплана по схеме «летающее крыло» (рис. 3), т. е. катамараны с несущим крылом.

В послевоенные годы работы по созданию экранопланов развернулись в США. Начиная с 1958 г. известным авиаконструктором У. Бертельсоном были построены и испытаны три аппарата. Это «Аркоптеры» «GEM-1» (рис. 4), «GEM-2», «GEM-З», выполненные примерно по одной и той же схеме, но имеющие разную величину. Двухместный экраноплан - «летающее крыло» (рис. 5) с толкающим воздушным винтом построил Н. Дискинсон. Американская фирма «Локхид» провела испытания трех аппаратов, последний из которых («летающая лодка») показан на рис. 6.

Самоходная пилотируемая модель 1000-тонного трансконтинентального пассажирского экранопла-на «Большой Вейландкрафт» была построена по проекту X. Вейланда (рис. 7). Это - четырехтонный катамаран с двумя несущими крыльями, расположенными одно за другим (типа тандем). Во время первых летных испытаний модель разбилась.

Экраноплан «Аэрофойлбот Х-112», спроектированный А. Липпишем, построен по чисто самолетной схеме и напоминает гидросамолет (рис. 8).

В Японии созданием экранопланов успешно занимается фирма «Кавасаки». Построенный ею аппарат «KAG-З» (рис. 9) представляет собой катамаран с несущим крылом и мощным подвесным мотором. Более подробное его описание приведено в следующей статье.

В нашей стране еще в начале 30-х годов очень интересный проект двухмоторного транспортного экраноплана был разработан авиаконструктором П. И. Гроховским. В 1963 г. студентами ОИИМФ под руководством Ю. А. Будницкого построен выполненный по схеме «летающее крыло» одноместный экраноплан с двумя мотоциклетными двигателями (рис. 10).

Аэродинамика экраноплана

Положение крыла над экраном характеризуется относительной высотой:


где h - высота задней кромки крыла над экраном, а b - хорда крыла. Установлено, что влияние экрана на работу крыла начинает сказываться при h
Благодаря близости экрана уменьшается и лобовое сопротивление крыла, главным образом, за счет снижения его индуктивного сопротивления (рис. 13). Напомним, что причиной индуктивного сопротивления являются вихри, возникающие на концах крыла вследствие перетекания воздуха из-под нижней плоскости (зона повышенного давления) на верхнюю (зона разрежения). Сопротивление профиля, обусловленное силами давления и трения, с приближением крыла к экрану изменяется сравнительно мало.

С приближением крыла к экрану качество К может увеличиться в 1,5-2 и более раз по сравнению с его значением для данного же крыла, но на большой высоте; одновременно можно заметить, что при этом максимальные значения К достигаются при меньших углах атаки. Естественно, что К вблизи экрана, как и на большой высоте, сильно зависит от характеристик самого крыла. Отметим, что применяющиеся на экранопланах профили крыла по своим основным характеристикам различаются мало. На эк-раноплане «ОИИМФ-2» применен профиль с относительной толщиной С=10÷12%.

При расчете площади крыла определяющей величиной является удельная нагрузка на единицу его площади. Для существующих экранопланов величина эта сравнительно невелика (35-50 кг/м 2), что объясняется стремлением ограничить мощность двигателя экспериментального аппарата.

Устройства для повышения качестве крыла

Для повышения летных и особенно взлетно-посадочных характеристик экранопланов их крылья оборудуют (рис. 14) щитками, закрылками, заслонками, концевыми шайбами. Применяются поворачивающиеся крылья.

Напомним, что отклонение щитков и закрылков обеспечивает увеличение подъемной силы крыла, главным образом, благодаря повышению вогнутости его Профиля. Концевые шайбы уменьшают перетекание воздуха через оконечности крыльев, а вблизи экрана обеспечивают образование под крылом полузамкнутого контура с зоной повышенного давления. На экранопланах обычно применяются односторонние шайбы, расположенные только с нижней стороны крыла.

Особенности аэрогидродинамической компоновки

Существуют две схемы компоновки экранопланов: «летающее крыло» и самолетная.

Первая характеризуется тем, что несущее крыло опирается концами на два поплавка, которые одновременно выполняют роль концевых шайб. Достоинствами этой схемы являются высокое аэродинамическое качество (благодаря отсутствию развитого корпуса и надстроек) и возможность использования объемов самого крыла для размещения грузов, основным недостатком - сложность решения проблемы устойчивости и мореходности (особенно для малых аппаратов).

В самолетной схеме из-за малого удлинения крыла λ сравнительно сильно сказывается влияние корпуса (фюзеляжа) аппарата, снижающее качество. Тем не менее, крылья малого удлинения установлены на большинстве современных экранопланов (исключение представляет модель X. Вейланда), так как с увеличением λ=l/b существенно ухудшаются мореходные и эксплуатационные качества аппарата, например, появляется опасность касания концом крыла гребня волны. При заданной площади крыла необходимое значение К можно обеспечить за счет уменьшения h, что требует, как известно, при заданной высоте полета увеличения хорды крыла, т. е. соответствующего уменьшения λ.

Устойчивость

Экраноплан, как и самолет, должен обладать способностью сохранять заданный режим полета и самостоятельно (без вмешательства пилота) возвращаться к нему после, например, порыва ветра. При движении аппарата продольная устойчивость в значительной степени обусловлена взаимным расположением его центра тяжести ЦТ и аэродинамического фокуса F (рис. 15), т. е. точки, относительно которой момент полной аэродинамической силы крыла не зависит от угла атаки при постоянной скорости полета. Если ЦТ самолета расположен впереди фокуса, аппарат обладает статической продольной устойчивостью (по перегрузке). Для экранопланов проблема устойчивости значительно сложнее, так как положение фокуса крыла экраноплана зависит не только от угла атаки, но и от h.

Продувками моделей установлено, что обычно применяемые крылья не обладают продольной устойчивостью, поэтому все современные экранопланы (как и самолеты) приходится оборудовать стабилизаторами или другими устройствами, смещающими их F в хвост аппарата (тем самым увеличивается расстояние между ЦТ и F). Наиболее успешно проблема продольной устойчивости решена на аппарате «Х-112», на котором она обеспечивается, главным образом, высоко установленным на вертикальном оперении, за пределами влияния экрана, развитым стабилизатором.

Что же касается поперечной устойчивости экранопланов, то она практически всегда будет обеспечена: в случае накренения аппарата на консоли крыла, приближающегося к экрану, возрастает подъемная сила и появляется восстанавливающий момент.

Путевая (курсовая) устойчивость обеспечивается примерно теми же способами, которые приняты в авиации, т. е. соответствующим выбором площади вертикального оперения (воздушного киля) и его положения относительно ЦТ экраноплана. При этом, естественно, существенную роль играет общая компоновка аппарата, в частности, положение точки приложения тяги винта.

Управляемость

Для управления по курсу чаще всего ставят один или два воздушных руля, для повышения эффективности обычно располагаемых в струе воздушного винта. В случае применения гребного винта используется обычный водяной руль либо подвесной мотор.

Известную сложность представляет свойственный экранопланам сильный дрейф на циркуляции; ведь у них нет ни погруженной в воду части корпуса, ни стоек подводных крыльев. Возможности выполнения крутых виражей со скольжением несущего крыла ограничены опасной близостью поверхности воды или Земли.

Для управляемости в продольной плоскости практически все экранопланы, включая и аппараты с гребным винтом, оборудуются рулем высоты или закрылком. Эти же устройства используются при старте экраноплана и для балансировки его на выбранном режиме полета.

Управляемость аппаратов в поперечной плоскости, т. е. по крену, необходимая для противодействия кренящим моментам и выполнения виражей, осуществляется при помощи элеронов, элевонов (т, е. тех же элеронов, но выполняющих одновременно и функции рулей высоты) или зависающих элеронов (т. е. элеронов, могущих работать и в режиме закрылков). Площадь этих дополнительных плоскостей довольно велика, так как скорость движения экраноплана все же значительно меньше, чем скорость самолета. Так, суммарная площадь V-образного хвостового оперения на «KAG-З» составляет 3,2 м 2 или около 35% площади несущего крыла.

Двигатели и движители

Мощность двигателей экранопланов, как правило, сравнительно невелика: отнесенная к полному весу экраноплана она колеблется от 80 до 160 л. с./т.

Большинство современных экранопланов приводится в движение воздушным винтом. Достоинства его очевидны: это возможность достижения больших скоростей и обеспечения амфибийных качеств аппарата.

Реже используется гребной винт, работающий в воде. Его положительными сторонами являются сравнительно небольшие размеры и незначительная шумность, а самое главное - более высокий к. п. д. на скоростях до 100-120 км/час. Так, на швартовах удельный упор, развиваемый воздушными винтами, колеблется в пределах 2-3 кг/л. с., а у гребных достигает 4-5 кг/л. с.

Стартовые устройства

Для выхода на основной режим движения экраноплану, как и гидросамолету или судну на подводных крыльях, необходимо развить скорость, при которой подъемная сила крыльев станет равной весу аппарата и оторвет его от воды. Испытаниями моделей установлено, что максимальное сопротивление движению («горб» на кривой сопротивления) возникает на скоростях, составляющих 40-60% от скорости отрыва.

Из рис. 16 видно, что горб полного сопротивления R возникает вследствие роста его гидродинамической составляющей W при повышении скорости на режиме плавания. Именно горбу сопротивления при критической скорости υ кр и соответствует минимальное значение аэрогидродинамического качества К экраноплана. Если максимальная тяга движителя недостаточна (кривая 1), экраноплан не сможет преодолеть горб сопротивления и будет продолжать глиссировать со скоростью, соответствующей точке α.

Насколько резко меняется сопротивление при разбеге видно, например, из кривой сопротивления экраноплана «Х-112» (рис. 17). При выходе на расчетный режим R упало с 25-35 до 10 кг, а гидродинамическое качество К (при весе D=231 кг) увеличилось с 7,7 до 23.

Для преодоления горба сопротивления при разбеге и выходе на расчетный режим было бы необходимо кратковременно повышать мощность двигателя в 2,5-3,5 раза по сравнению с той, которая необходима для полета. На практике повышения подъемной силы, выталкивающей корпус из воды в момент разгона, достигают применением каких-либо стартовых устройств: закрылков, предкрылков, поворотных крыльев, гидролыж, систем поддува.

На «Аэросанях № 8», например, это - два небольших поворотных крыла, установленных между боковыми шайбами в струе воздушного винта. В момент разбега среднее крыло при помощи ручного привода устанавливается так, что отбрасываемая винтом воздушная струя направляется под основное несущее крыло. В результате в полузамкнутом объеме под несущим крылом, огражденном с боков поплавками-шайбами, а в хвостовой части опущенными закрылками, образуется воздушная подушка с повышенным давлением. Таким образом, даже при отсутствии поступательного движения на крыле развивается значительная подъемная сила, приподнимающая аппарат из воды.

Стартовое устройство в виде гидролыж, т. е. подводных крыльев Еесьма малого удлинения (λ=0,1÷0,2 и менее), до настоящего времени было применено лишь на экраноплане X. Вейланда. Считается, что их достоинствами являются довольно высокое гидродинамическое качество (К=5÷6), возможность снижения перегрузок аппарата при движении на волнении и простота.

Стартовое устройство в виде специальной системы поддува, состоящей из двух вентиляторов с газотурбинным приводом, предусмотрено лишь на экраноплане «Коламбиа».

Стартовые устройства могут применяться также и для снижения перегрузок при посадке, особенно в сложных гидрометеорологических условиях.

Конструкция корпуса

По конструкции корпуса, поплавков, крыльев и других элементов современные экранопланы во многом напоминают самолет. Большинство аппаратов выполнено из легких, главным образом алюминиевых, сплавов, причем толщины обшивки и профилей набора (например, у экраноплана ОИИМФ) находятся в пределах 0,5-2,0 мм.

Несколько отличаются от других аппараты У. Бертельсона, на которых применена ферменная конструкция из легких стальных труб с дюралевой обшивкой. Оригинальна конструкция экраноплана Н. Дискинсона: несущее крыло и поплавки выполнены из сплошных брусков пенопласта, стянутых тонким стальным тросом.

Все в больших масштабах применяются и новые конструкционные материалы. Например, часть обшивки «KAG-З» изготовлена из стеклопластика.

1. Основы теории крыла читатель найдет в статье Э. А. Афрамеева и В. В. Вейнберга, помещенной . Здесь напомним выражение, связывающее мощность N p и основные расчетные характеристики аппарата:


где G - его вес, υ - заданная скорость.

2. При повышении скоростей до 140-150 км/час значение К из-за кавитации крыльев падает до 5-6, в то время как для экранопланов оно сохраняется без изменений. Это делает вывод в пользу экранопланов еще более очевидным.



Поделиться