Менделеевым периодического закона. Открытие Д.И.Менделеевым периодического закона и периодической системы

Реферат

«История открытия и подтверждения периодического закона Д.И. Менделеева»

Санкт-Петербург 2007


Введение

Периодический закон Д.И. Менделеева – это фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д.И. Менделеевым в феврале 1869 г. При сопоставлении свойств всех известных в то время элементов и величин их атомных масс (весов). Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодического закона: «…свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Графическим (табличным) выражением периодического закона является разработанная Менделеевым периодическая система элементов.


1. Попытки других ученых вывести периодический закон

Периодическая система, или периодическая классификация, элементов имела огромное значение для развития неорганической химии во второй половине XIX в. Это значение в настоящее время колоссально, потому что сама система в результате изучения проблем строения вещества постепенно приобрела ту степень рациональности, которой невозможно было достичь, зная только атомные веса. Переход от эмпирической закономерности к закону составляет конечную цель всякой научной теории.

Поиски основы естественной классификации химических элементов и их систематизации начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX в. число известных химических элементов было ещё слишком невелико, а принятые значения атомных масс многих элементов неточны.

Не считая попыток Лавуазье и его школы дать классификацию элементов на основе критерия аналогии в химическом поведении, первая попытка периодической классификации элементов принадлежит Дёберейнеру.

Триады Дёберейнера и первые системы элементов

В 1829 г. немецкий химик И. Дёберейнер предпринял попытку систематизации элементов. Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами: Li–Na–K; Ca–Sr–Ba; S–Se–Te; P–As–Sb; Cl–Br–I.

Сущность предложенного закона триад Дёберейнера состояла в том, что атомная масса среднего элемента триады была близка к полусумме (среднему арифметическому) атомных масс двух крайних элементов триады. Хотя разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в соответствии с их атомными массами.

Идеи Дёберейнера были развиты Л. Гмелиным, который показал, что взаимосвязь между свойствами элементов и их атомными массами значительно сложнее, нежели триады. В 1843 г. Гмелин опубликовал таблицу, в которой химически сходные элементы были расставлены по группам в порядке возрастания соединительных (эквивалентных) весов. Элементы составляли триады, а также тетрады и пентады (группы из четырёх и пяти элементов), причём электроотрицательность элементов в таблице плавно изменялись сверху вниз.

В 1850-х гг. М. фон Петтенкофер и Ж. Дюма предложили т.н. дифференциальные системы, направленные на выявление общих закономерностей в изменении атомного веса элементов, которые детально разработали немецкие химики А. Штреккер и Г. Чермак.

В начале 60-х годов XIX в. появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону.

Спираль де Шанкуртуа

А. де Шанкуртуа располагал все известные в то время химические элементы в единой последовательности возрастания их атомных масс и полученный ряд наносил на поверхность цилиндра по линии, исходящей из его основания под углом 45° к плоскости основания (т.н. земная спираль ). При развертывании поверхности цилиндра оказывалось, что на вертикальных линиях, параллельных оси цилиндра, находились химические элементы со сходными свойствами. Так, на одну вертикаль попадали литий, натрий, калий; бериллий, магний, кальций; кислород, сера, селен, теллур и т.д. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. В группу щелочных металлов попадал марганец, в группу кислорода и серы – ничего общего с ними не имеющий титан.

Таблица Ньюлендса

Английский учёный Дж. Ньюлендс в 1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав . Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически.

Таблицы Одлинга и Мейера

В том же 1864 г. появилась первая таблица немецкого химика Л. Мейера; в неё были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах сходных элементов.

В 1870 г. вышла работа Мейера, содержащая новую таблицу под названием «Природа элементов как функция их атомного веса», состоявшая из девяти вертикальных столбцов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Таблица сопровождалась графиком зависимости атомного объёма элемента от атомного веса, имеющий характерный пилообразный вид, прекрасно иллюстрирующий термин «периодичность», уже предложенный к тому времени Менделеевым.

2. Что было сделано до дня великого открытия

Предпосылки открытия периодического закона следует искать в книге Д.И. Менделеева (далее Д.И.) «Основы химии». Первые главы 2-й части этой книги Д.И. написал в начале 1869 г. 1-я глава была посвящена натрию, 2-я – его аналогам, 3-я – теплоемкости, 4-я – щелочноземельным металлам. Ко дню открытия периодического закона (17 февраля 1869 г.) он, вероятно, уже успел изложить вопрос о соотношении таких полярно-противоположных элементов, как щелочные металлы и галоиды, которые были сближены между собой по величине их атомности (валентности), а также вопрос о соотношении самих щелочных металлов по величине их атомных весов. Он вплотную подошел и к вопросу о сближении и сопоставлении двух групп полярно-противоположных элементов по величине атомных весов их членов, что фактически уже означало отказ от принципа распределения элементов по их атомности и переход к принципу их распределения по атомным весам. Этот переход представлял собой не подготовку к открытию периодического закона, а уже начало самого открытия

К началу 1869 г. Значительная часть элементов была объединена в отдельные естественные группы и семейства по признаку общности химических свойств; наряду с этим другая часть их представлял собой разрозненные, стоявшие особняком отдельные элементы, которые не были объединены в особые группы. Твердо установленными считались следующие:

– группа щелочных металлов – литий, натрий, калий, рубидий и цезий;

– группа щелочноземельных металлов – кальций, стронций и барий;

– группа кислорода – кислород, сера, селен и теллур;

– группа азота – азот, фосфор, мышьяк и сурьма. Кроме того, сюда часто присоединяли висмут, а в качестве неполного аналога азота и мышьяка рассматривали ванадий;

– группа углерода – углерод, кремний и олово, причем в качестве неполных аналогов кремния и олова рассматривали титан и цирконий;

– группа галогенов (галоидов) – фтор, хлор, бром и йод;

– группа меди – медь и серебро;

– группа цинка – цинк и кадмий

– семейство железа – железо, кобальт, никель, марганец и хром;

– семейство платиновых металлов – платина, осмий, иридий, палладий, рутений и родий.

Сложнее дело обстояло с такими элементами, которые могли быть отнесены к разным группам или семействам:

– свинец, ртуть, магний, золото, бор, водород, алюминий, таллий, молибден, вольфрам.

Кроме того был известен ряд элементов, свойства которых были еще недостаточно изучены:

– семейство редкоземельных элементов – иттрий, «эрбий», церий, лантан и «дидим»;

– ниобий и тантал;

– бериллий;

3. День великого открытия

Д.И. был весьма разносторонним ученым. Он давно и очень сильно интересовался вопросами сельского хозяйства. Он принимал самое близкое участие в деятельности Вольного экономического общества в Петербурге (ВЭО), членом которого он состоял. ВЭО организовало в ряде северных губерний артельное сыроварение. Одним из инициаторов этого начинания был Н.В. Верещагин. В конце 1868 г., т.е. в то время как Д.И. заканчивал вып. 2 своей книги, Верещагин обратился в ВЭО с просьбой прислать кого-нибудь из членов Общества для того, чтобы на месте обследовать работу артельных сыроварен. Согласие на такого рода поездку выразил Д.И. В декабре 1868 г. он обследовал ряд артельных сыроварен в Тверской губернии. Для завершения обследования нужна было дополнительная командировка. Как раз на 17 февраля 1869 г. и был назначен отъезд.

Введение

Трудно себе представить современную науку без открытия Д.И. Менделеева. Данному закону уже чуть менее 150 лет и он продолжает свое триумфальное шествие. Не возможно изучать химию иначе, как на основе периодического закона и периодической системы элементов. Они относятся к таким научным закономерностям, которые отражают явления, реально существующие в природе, и поэтому никогда не потеряют своего значения.

Целью настоящей работы является выяснения условий и хода открытия, сделанного Д.И. Менделеевым, выяснить структуру периодической системы и зависимость свойств элементов, понять схему строения атома химического элемента, определить прогностическую функцию периодического закона.

Свойства простых веществ, а также формы, и свойства их соединений находятся в периодической зависимости от зарядов ядер атомов.

Открытие периодического закона

В начале 19 в. происходит быстрое развитие химической науки. Если в конце 18 века было известно лишь 25 химических элементов (такие H, C, N, О, P, Cl, и прочие), то к 60-м годам 19 века из число равно 63. Параллельно с открытием новых элементов шло накопление сведений об их атомном весе, физических и химических свойствах, что привело к необходимости классификации элементов.

Немецкий ученый Деберейнер в 1829 г. сгруппировал элементы по триадам:

И сформулировал правило триад: атомные веса трех родственных элементов связаны таким образом, что атомный вес среднего элемента является средним арифметическим весов более легкого и более тяжелого.

В 1864 г. английский ученый Ньюленд пытался разбить все известные элементы на октавы:

H, Li, Be, B, C, N, O;

F, Na, Mg, Al, Si, P, S.

Всего до Менделеева было опубликовано свыше 30 работ по систематике элементов. Однако, общего закона, связывающего все химические элементы, эти ученые не открыли, т.к. они изучали закономерности между сходными элементами в естественных группах, а закономерную связь между группами не искали; а так же, пользуясь неверными атомными массами объединяли в одну группу элементы, далекие по химическим свойствам.

17 февраля 1869 г. (по старому стилю) профессор Петербургского университета Дмитрий Иванович Менделеев сделал первый набросок таблицы химических элементов. В этой таблице он расположил элементы в порядке возрастания их атомных весов и проследил периодическую повторяемость их атомных весов:

Менделеев Д.И. назвал его «Опыт системы элементов, основанный на их атомном весе и химическом свойстве». Это была самая первая таблица периодической системы элементов.

Но чтобы обнаруженная закономерность могла называться законом и была признана другими учеными как закон, надо было еще много работать. И два с половиной года - а вплоть до декабря 1871 г. - он занимался разработкой своего открытия.

Менделеев видел три обстоятельства, которые, по его мнению, способствовали открытию периодического закона:

  • · были более или менее точно определены величины атомных весов большинства химических элементов;
  • · появилось четкое понятие о группах сходных по химическим свойствам элементов;
  • · к 1869 г. была изучена химия многих редких элементов, без знания которой трудно было бы прийти к какому-либо обобщению.

Менделеев сопоставил между собой все известные элементы о величине атомных весов и логично объединил их в структуре своей таблицы. Он характеризовал течение своего творческого процесса: «Искать же что-либо, хотя бы грибы или какую-нибудь зависимость, нельзя иначе, как смотря и пробуя. Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причем, сомневаясь во многих неясностях, я ни минуты не сомневался в общности сделанного вывода, так как случайность допустить было невозможно».

На первой карточке у Менделеева Д.И было написано название, атомный вес и свойства водорода, вторую карточку с атомным весом и свойствами металла лития он поместил под карточкой водорода. На третье место рядом с литием Менделеев Д.И положил карточку, на которой было написано - Ве(9), а не Ве (14), т.к. принял во внимание особенности химических свойств бериллия: они представляли плавный переход от свойств лития к свойствам бора.

Карточку бора Менделеев Д.И поместил на четвертое место. На пятое углерод. На шестом месте - азот, далее следовали кислород и фтор. Девятая же карточка, принадлежащая металлу натрию, была помещена под второй, на которой были написаны химические характеристики металла лития. На следующее место был поставлен магний за ним алюминий. Под углеродом была положена карточка кремния, под кислородом - сера, под фтором - хлор.

Таки образом, в вертикальных рядах оказались химически сходные элементы. Металл литий по своим свойствам похож на металл натрий. Также как бериллий и магний схожи друг с другом - они образуют с металлами очень схожие соединения. Свойства кислорода и серы также сходны между собой. Под карточкой натрия была помещена карточка с очень схожим на натрий калием, и калий стал началом нового ряда. Под магнием Менделеев Д.И. поместил сходный с магнием кальций. Следующим в порядке возрастания атомного веса должен был идти ванадий, но вместо этого Менделеев Д.И рядом с кальцием оставляет пустую карточку. Вслед за пустой карточкой он ставит карточку титана, хотя на тот момент атомный вес титана химиками считался не 48 а 52. Таким образом, Менделеев Д.И предсказал истинное значение атомного веса для титана, также как и для бериллия. После чего, за титаном следует карточка ванадия, а уже далее карточки хрома и марганца. Этот период в таблице Менделеева длинный. За марганцем идут железо (Fe)-56, кобальт (Co)-59, никель(Ni)-59, медь(Cu)-63, цинк (Zn)-65. Но вслед за цинком ученый вновь оставил в своей таблице подряд два пустых места. Далее следовали карточки с мышьяком, селеном и бромом, завершавшим длинный период. При этом карточки мышьяка, селена и брома оказались под сходными с ними элементами конца предыдущего короткого периода, т.е. элементов фосфора, серы и хлора.

В 1871 году в журнале Русского химического общества появилась статья Менделеева Д.И «Естественная система элементов и применение ее к указанию свойств неоткрытых элементов». В данной статье он описал три до этого времени неизвестных научному миру химических элемента, причем так обстоятельно, как не смог бы этого сделать иной исследователь, державший в руках их соединения и посвятивший долгие годы изучению их в лаборатории. Этот факт можно назвать великим предсказанием, т.к. менделеевский экаалюминий соответствует галлию, экабор - скандию, экасилиций - германию. Также в данной статье Менделеев Д.И впервые употребляет понятие «закон периодичности», называя свою систему естественной. В том же году появляется очередная статья Менделеева Д.И. под названием «Периодическая законность химических элементов», о которой сам автор впоследствии говорил: «Это лучший свод моих взглядов и соображений о периодичности элементов …..». В данной статье Менделеев Д.И впервые приводит каноническую формулировку периодического закона, просуществовавшую до его физического обоснования: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Здесь читатель найдет информацию об одном из важнейших законов, когда-либо открытых человеком в научной области - периодическом законе Менделеева Дмитрия Ивановича. Вы ознакомитесь с его значением и влиянием на химию, будут рассмотрены общие положения, характеристика и детали периодического закона, история открытия и основные положения.

Что такое периодический закон

Периодический закон - это природный закон фундаментального характера, который был открыт впервые Д. И. Менделеевым еще в 1869 году, а само открытие произошло благодаря сравнению свойств некоторых химических элементов и величин массы атома, известных в те времена.

Менделеев утверждал, что, согласно его закону, простые и сложные тела и разнообразные соединения элементов зависят от их зависимости периодического типа и от веса их атома.

Периодический закон является уникальным в своем роде и это связано с тем фактом, что он не выражается математическими уравнениями в отличие от других фундаментальных законов природы и вселенной. Графически свое выражение он находит в периодической системе химических элементов.

История открытия

Открытие периодического закона произошло в 1869 году, но попытки систематизировать все известные х-кие элементы начались задолго до этого.

Первую попытку создать такую систему предпринял И. В. Деберейнер в 1829. Он классифицировал все известные ему химические элементы в триады, связанные между собой близостью половины суммы атомных масс, входящих в эту группу трех компонентов. Следом за Деберейнером предприняли попытку создать уникальную таблицу классификации элементов А. де Шанкуртуа, он назвал свою систему «земной спиралью», а после него была составлена Джоном Ньюлендсом октава Ньюлендса. В 1864 практически одновременно Уильям Олдинг и Лотар Мейер опубликовали созданные независимо друг от друга таблицы.

Периодический закон был представлен научному сообществу на обозрение восьмого марта 1869, и произошло это во время заседания Русского х-кого общества. Менделеев Дмитрий Иванович заявил при всех о своем открытии и в том же году был выпущен менделеевский учебник «Основы химии», где впервые была показана периодическая таблица, созданная им. Годом позже, в 1870, он написал статью и отдал ее на обозрение в РХО, где впервые было употреблено понятие периодического закона. В 1871 Менделеев дал исчерпывающую характеристику своего з-на в знаменитой статье периодической законности химических элементов.

Неоценимый вклад в развитие химии

Значение периодического закона невероятно велико для научного сообщества всего мира. Это связано с тем, что открытие его дало мощный толчок развитию, как химии, так и других наук о природе, например, физике и биологии. Открытой была взаимосвязь элементов с их качественными химическими и физическими характеристиками, также это позволило понять суть построения всех элементов по одному принципу и дало начало современной формулировке понятий о химических элементах, конкретизировать знания представление о веществах сложного и простого строения.

Использование периодического закона позволило решать проблему химического прогнозирования, определить причину поведения известных химических элементов. Атомная физика, а в том числе и ядерная энергетика, стали возможными вследствие этого же закона. В свою очередь, данные науки позволили расширить горизонты сущности этого закона и углубиться в его понимание.

Химические свойства элементов периодической системы

По сути, химические элементы взаимосвязаны между собой характеристиками, свойственными им в состоянии свободного как атома, так и иона, сольватированного или гидратированного, в простом веществе и форме, которую могут образовать их многочисленные соединения. Однако х-кие свойства обычно заключаются в двух явлениях: свойства, характерные для атома в свободном состоянии, и простого вещества. К такому роду свойств относится множество их видов, но самые важные это:

  1. Атомная ионизация и ее энергия, зависящая от положения элемента в таблице, его порядкового числа.
  2. Энергетическое родство атома и электрона, которая так же, как и атомная ионизация, зависит от места нахождения элемента в периодической таблице.
  3. Электроотрицательность атома, не носящая постоянное значение, а способная изменяться в зависимости от различного рода факторов.
  4. Радиусы атомов и ионов - тут, как правило, используются эмпирические данные, что связано с волновой природой электронов в состоянии движения.
  5. Атомизация простых веществ - описание возможностей элемента к реакционной способности.
  6. Степени окисления - формальная характеристика, однако фигурирующая как одна из важнейших характеристик элемента.
  7. Потенциал окисления для простых веществ - это измерение и показание потенциала вещества к действию его в водных растворах, а также уровень проявления свойств окислительно-восстановительного характера.

Периодичность элементов внутреннего и вторичного типа

Периодический закон дает понимание еще одной немаловажной составной частицы природы - внутренней и вторичной периодичности. Вышеупомянутые области изучения атомных свойств, на самом деле, гораздо сложнее, чем можно подумать. Связано это с тем фактом, что элементы s, p, d таблицы меняют свои качественные характеристики в зависимости от положения в периоде (периодичность внутреннего характера) и группе (периодичность вторичного характера). Например, внутренний процесс перехода элемента s от первой группы до восьмой к p-элементу сопровождается точками минимума и максимума на кривой линии энергии ионизированного атома. Данное явление показывает внутреннюю непостоянность периодичности изменения свойств атома по положению в периоде.

Итоги

Теперь читатель имеет четкое понимание и определение того, что являет собой периодический закон Менделеева, осознает его значение для человека и развития различных наук и имеет представление о его современных положениях и истории открытия.

Реферат

«История открытия и подтверждения периодического закона Д.И. Менделеева»

Санкт-Петербург 2007


Введение

Периодический закон Д.И. Менделеева – это фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. Открыт Д.И. Менделеевым в феврале 1869 г. При сопоставлении свойств всех известных в то время элементов и величин их атомных масс (весов). Термин «периодический закон» Менделеев впервые употребил в ноябре 1870, а в октябре 1871 дал окончательную формулировку Периодического закона: «…свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Графическим (табличным) выражением периодического закона является разработанная Менделеевым периодическая система элементов.


1. Попытки других ученых вывести периодический закон

Периодическая система, или периодическая классификация, элементов имела огромное значение для развития неорганической химии во второй половине XIX в. Это значение в настоящее время колоссально, потому что сама система в результате изучения проблем строения вещества постепенно приобрела ту степень рациональности, которой невозможно было достичь, зная только атомные веса. Переход от эмпирической закономерности к закону составляет конечную цель всякой научной теории.

Поиски основы естественной классификации химических элементов и их систематизации начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX в. число известных химических элементов было ещё слишком невелико, а принятые значения атомных масс многих элементов неточны.

Не считая попыток Лавуазье и его школы дать классификацию элементов на основе критерия аналогии в химическом поведении, первая попытка периодической классификации элементов принадлежит Дёберейнеру.

Триады Дёберейнера и первые системы элементов

В 1829 г. немецкий химик И. Дёберейнер предпринял попытку систематизации элементов. Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами: Li–Na–K; Ca–Sr–Ba; S–Se–Te; P–As–Sb; Cl–Br–I.

Сущность предложенного закона триад Дёберейнера состояла в том, что атомная масса среднего элемента триады была близка к полусумме (среднему арифметическому) атомных масс двух крайних элементов триады. Хотя разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в соответствии с их атомными массами.

Идеи Дёберейнера были развиты Л. Гмелиным, который показал, что взаимосвязь между свойствами элементов и их атомными массами значительно сложнее, нежели триады. В 1843 г. Гмелин опубликовал таблицу, в которой химически сходные элементы были расставлены по группам в порядке возрастания соединительных (эквивалентных) весов. Элементы составляли триады, а также тетрады и пентады (группы из четырёх и пяти элементов), причём электроотрицательность элементов в таблице плавно изменялись сверху вниз.

В 1850-х гг. М. фон Петтенкофер и Ж. Дюма предложили т.н. дифференциальные системы, направленные на выявление общих закономерностей в изменении атомного веса элементов, которые детально разработали немецкие химики А. Штреккер и Г. Чермак.

В начале 60-х годов XIX в. появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону.

Спираль де Шанкуртуа

А. де Шанкуртуа располагал все известные в то время химические элементы в единой последовательности возрастания их атомных масс и полученный ряд наносил на поверхность цилиндра по линии, исходящей из его основания под углом 45° к плоскости основания (т.н. земная спираль ). При развертывании поверхности цилиндра оказывалось, что на вертикальных линиях, параллельных оси цилиндра, находились химические элементы со сходными свойствами. Так, на одну вертикаль попадали литий, натрий, калий; бериллий, магний, кальций; кислород, сера, селен, теллур и т.д. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. В группу щелочных металлов попадал марганец, в группу кислорода и серы – ничего общего с ними не имеющий титан.

Таблица Ньюлендса

Английский учёный Дж. Ньюлендс в 1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав . Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически.

Таблицы Одлинга и Мейера

В том же 1864 г. появилась первая таблица немецкого химика Л. Мейера; в неё были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах сходных элементов.

В 1870 г. вышла работа Мейера, содержащая новую таблицу под названием «Природа элементов как функция их атомного веса», состоявшая из девяти вертикальных столбцов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Таблица сопровождалась графиком зависимости атомного объёма элемента от атомного веса, имеющий характерный пилообразный вид, прекрасно иллюстрирующий термин «периодичность», уже предложенный к тому времени Менделеевым.

2. Что было сделано до дня великого открытия

Предпосылки открытия периодического закона следует искать в книге Д.И. Менделеева (далее Д.И.) «Основы химии». Первые главы 2-й части этой книги Д.И. написал в начале 1869 г. 1-я глава была посвящена натрию, 2-я – его аналогам, 3-я – теплоемкости, 4-я – щелочноземельным металлам. Ко дню открытия периодического закона (17 февраля 1869 г.) он, вероятно, уже успел изложить вопрос о соотношении таких полярно-противоположных элементов, как щелочные металлы и галоиды, которые были сближены между собой по величине их атомности (валентности), а также вопрос о соотношении самих щелочных металлов по величине их атомных весов. Он вплотную подошел и к вопросу о сближении и сопоставлении двух групп полярно-противоположных элементов по величине атомных весов их членов, что фактически уже означало отказ от принципа распределения элементов по их атомности и переход к принципу их распределения по атомным весам. Этот переход представлял собой не подготовку к открытию периодического закона, а уже начало самого открытия

К началу 1869 г. Значительная часть элементов была объединена в отдельные естественные группы и семейства по признаку общности химических свойств; наряду с этим другая часть их представлял собой разрозненные, стоявшие особняком отдельные элементы, которые не были объединены в особые группы. Твердо установленными считались следующие:

– группа щелочных металлов – литий, натрий, калий, рубидий и цезий;

– группа щелочноземельных металлов – кальций, стронций и барий;

– группа кислорода – кислород, сера, селен и теллур;

– группа азота – азот, фосфор, мышьяк и сурьма. Кроме того, сюда часто присоединяли висмут, а в качестве неполного аналога азота и мышьяка рассматривали ванадий;

– группа углерода – углерод, кремний и олово, причем в качестве неполных аналогов кремния и олова рассматривали титан и цирконий;

– группа галогенов (галоидов) – фтор, хлор, бром и йод;

– группа меди – медь и серебро;

– группа цинка – цинк и кадмий

– семейство железа – железо, кобальт, никель, марганец и хром;

– семейство платиновых металлов – платина, осмий, иридий, палладий, рутений и родий.

Сложнее дело обстояло с такими элементами, которые могли быть отнесены к разным группам или семействам:

– свинец, ртуть, магний, золото, бор, водород, алюминий, таллий, молибден, вольфрам.

Кроме того был известен ряд элементов, свойства которых были еще недостаточно изучены:

– семейство редкоземельных элементов – иттрий, «эрбий», церий, лантан и «дидим»;

– ниобий и тантал;

– бериллий;

3. День великого открытия

Д.И. был весьма разносторонним ученым. Он давно и очень сильно интересовался вопросами сельского хозяйства. Он принимал самое близкое участие в деятельности Вольного экономического общества в Петербурге (ВЭО), членом которого он состоял. ВЭО организовало в ряде северных губерний артельное сыроварение. Одним из инициаторов этого начинания был Н.В. Верещагин. В конце 1868 г., т.е. в то время как Д.И. заканчивал вып. 2 своей книги, Верещагин обратился в ВЭО с просьбой прислать кого-нибудь из членов Общества для того, чтобы на месте обследовать работу артельных сыроварен. Согласие на такого рода поездку выразил Д.И. В декабре 1868 г. он обследовал ряд артельных сыроварен в Тверской губернии. Для завершения обследования нужна было дополнительная командировка. Как раз на 17 февраля 1869 г. и был назначен отъезд.

Если бы Д.И. мог наперед знать, что именно 17 февраля он займется новым химическим исследованием и что последующая обработка результатов займет у него столько времени, то вряд ли за 2 дня до открытия он взял бы из университета, где работал, отпускное свидетельство для поездки в ряд губерний, начиная с 17 февраля 1869 г.

Рассмотрим, как прошел день 17 февраля и какие события в жизни и творчестве его наполнили. В связи с этими событиями Д.И, не смог в намеченный срок выехать на сыроварни и был вынужден задержаться в Петербурге до начала марта. Все это время он был занят совершением и обработкой периодического закона и его первичной публикацией в виде таблицы элементов.

Чтобы лучше рассмотреть, как протекало открытие, выделим несколько стадий, которые оно прошло в течение этого одного дня:

1) начальная стадия, когда Д.И. нащупал новый принцип распределения элементов, делая выкладки на только что полученном письме от Ходнева;

2) стадия составления первых двух неполных набросков основной части будущей системы элементов;

3) стадия составления карточек элементов для «химического пасьянса»;

4) решающая стадия – составление полного чернового варианта всей системы;

5) заключительная стадия – переписывание набело только что открытой системы элементов для опубликования ее в печати.

В день отъезда Д.И. получил письмо за подписью секретаря ВЭО А.И. Ходнева. Д.И., по свидетельствам современников часто использовал обратную сторону писем для своих научных изысканий. А поскольку его неотступно преследовала мысль о нахождении общей закономерности свойств элементов, то, неудивительно, что, получив письмо, он стал делать на нем наброски будущей системы элементов.

Д.И. сопоставлял не отдельные элементы, а группы элементов, имеющих сходные свойства. Начал он с сопоставления группы щелочных металлов и галоидов. Затем долго искал переход от щелочных к щелочноземельным металлам. Он предполагал, что между ними должны находится т. наз. «переходные» металлы (Cu, Ag, Hg), а затем все же поставил щелочноземельные металлы после щелочных, минуя переходные.

Далее последовали две неполные таблички элементов, составленные на одном листе бумаги, в которых Д.И. продолжал составлять из групп элементов и отдельных элементов, не вошедших в группы, варианты будущей таблицы.

Решающим шагом к открытию периодического закона стало то, что Д.И. попытался сопоставить по величине атомных весов группы несходных элементов. Изначально Д.И. предполагал строить свою систему на основе принципа атомности (валентности) элементов. Однако затем он перешел к принципу распределения на основе величины атомной массы элементов. Тем не менее, принцип атомности не был отброшен, он применялся вкупе с новым принципом. Так, Менделеев выстраивал свои групп на основе не только общности химических свойств элементов, но и на основе их одинаковой валентности. А при составлении будущих периодов таблицы, он отмечал закономерное изменение валентности от1 до 4 при переходе от Li к C, а затем вновь до 1 при переходе к F.

При составлении нижней неполной таблички элементов для Д.И. становилось ясно, что решена была только первая, далеко не самая сложная задача – размещение уже довольно изученных элементов в центральной части будущей таблицы. Предстояла же самая сложная и трудная часть задачи с размещением элементов на периферии формирующейся системы.

В результате составления набросков двух неполных табличек элементов на отдельном листке бумаги выявилось несовершенство метода, примененного для выработки полной таблицы элементов, которая должна была охватить собой все элементы. При неясности положения того или иного элемента, этот элемент приходилось бы передвигать не один раз с места на место; тогда табличка заполнялась бы вычеркиваниями и поправками, что не дало бы возможности быстро ориентироваться при размещении новых элементов. Нужно было найти какой-то более гибкий, более подвижный способ, который позволял бы в любой момент видеть картину распределения элементов как бы в чистом виде, не заслоненную предшествующими переносами, исправлениями и зачеркиваниями. Такой прием Д.И, нашел в карточках с написанными на них элементами. Такие карточки легко можно было переставлять, имея перед глазами всю картину распределения элементов, достигнутого в данный момент. Вместе с тем можно было в любой момент обозревать карточки тех элементов, которые еще не попали в таблицу. Так возник прием, который А.Е. Ферсман очень удачно назвал «пасьянсом».

Все 63 карточки Д.И. разделил на четыре категории по признаку их распространенности и изученности. В 1-ю категорию попало 14 элементов, которые распространены повсеместно и составляют главный материал видимых тел: Al, C, Ca, Cl, Fe, H, K, Mg, N, Na, O, P, S, Si. В силу своей распространенности, эти элементы должны были входить в число хорошо исследованных. Во 2-ю категорию попали такие элементы (21), которые встречаются в свободном виде или в виде соединений, хотя и не распространены повсюду или встречаются в малых количествах: Ag, As, Au, B, Ba, Bi, Br, Co, Cr, Cu, F, Hg, I, Mn, Ni, Pb, Pt, Sb, Sn, Sr, Zn. Эти элементы также должны были входить в число хорошо изученных. В 3-ю категорию вошло 18 элементов редких, но хорошо исследованных: Be, Ce, Cd, Cs, In, Ir, Li, Mo, Os, Pd, Rb, Se, Te, Tl, Ur, Wo, Y. В 4-ю категорию вошло 10 элементов редких и мало исследованных: Di, Er, La, Nb, Rh, Ru, Ta, Th, Va, Zr. В дальнейшем Д.И. мог сделать некоторые перестановки элементов между первыми тремя категориями и последней категорией. Когда карточки всех 63 элементов были готовы, Д.И. не прибегая еще к «химическому пасьянсу», установил порядок включения в свою готовящуюся систему отдельных категорий элементов. Но так как все элементы были изображены теперь на карточках, то можно предположить, что разбивка их на различные категории выражалась в разбивке карточек на несколько кучек. Вероятно, в первую очередь в таблицу должны были войти наиболее изученные элементы, причем те, связи между которыми были бесспорно выяснены на предшествующей стадии открытия периодического закона. При определении порядка включения элементов в таблицу признак распространенности не имел существенного значения, тогда как решающее значение приобретал атомный вес. Сначала вносились в таблицу более легкие, а затем – более тяжелые элементы. Первая кучка – наиболее изученные элементы; следующие за ней две кучки – менее изученные элементы; из них вторая – «легкие», третья – «тяжелые» элементы; четвертая – слабо изученные элементы. Разбив карточки всех элементов на кучки, Д.И. определил этим общую последовательность составления таблицы элементов.

К моменту раскладывания «пасьянса» открытие периодического закона вступило в свою решающую фазу. Определяющая роль атомного веса при сопоставлении групп несходных элементов выяснилась в полной мере. Центральная часть будущей системы элементов сформировалась в своей основе. Осталось «только» одно: доказать всеобщий характер того принципа, который уже был доказан в его применении к центральной части таблицы. Но это «только» составляло главную, непреодолимую еще трудность при создании периодической системы элементов.

При доведении до конца построения своей таблицы элементов Д.И. продолжил применять тот же прием сопоставления групп несходных элементов, с помощью которого он начал строить эту таблицу в первых записях, сделанных на письме Ходнева, и в обеих неполных табличках. Так, путем преставления карточек элементов на основе имеющихся уже сведений, и был открыт периодический закон.

Когда периодический закон был открыт, и была составлена система элементов в первом ее варианте, оставалось оформить достигнутый результат в виде чистой таблицы, по которой другие ученые могли бы ознакомиться с открытием, сделанным Д.И. При переписывании таблицы набело Д.И. внес следующие изменения: элементы в ней располагались не в порядке убывания, а в порядке возрастания атомных весов, т.е. более тяжелые элементы подписывались под более легкими, а на тех местах, где были пропуски и где можно было предполагать не известные еще элементы, Д.И. поставил знак вопроса и предположительно вычислил атомные веса.

Отдав в типографию для набора рукопись «Опыта системы элементов», Д.И. не мог уехать из Петербурга на сыроварни до тех пор, пока не пришла корректура. Для набора требовалось время, и это время Д.И. использовал для того, чтобы обобщить и обработать сделанное им открытие в виде статьи, изложив в ней то, что было заключено в «Опыте системы элементов». К моменту написания статьи Д.И. составил уже много различных вариантов системы элементов, основанной на их атомном весе. Свою статью он озаглавил «Соотношение свойств с атомным весом элементов»

В своей статье Д.И. писал: «Убедясь предыдущею таблицею в том, что атомный вес элементов может служить опорою их системы, я первоначально расположил элементы в непрерывном порядке по величине атомного веса и тотчас заметил, что существуют некоторые перерывы в ряду таким образом поставленных элементов». Анализируя это и другие высказывания Д.И., можно сделать вывод о том, что Д.И. сначала составил свой «Опыт системы элементов» (путем сопоставления групп элементов), а затем убедился, что атомный вес может являться основой системы элементов. После этого Д.И. приступил к дальнейшему исследованию открытой им закономерности, и это свое дальнейшее исследование начал с того, что расположил все элементы в непрерывный ряд по возрастанию их атомных весов. Это опровергает мнение некоторых химиков, будто сначала Д.И. составил общий ряд элементов по величине их атомного веса, и только после этого он заметил периодичность в изменении свойств; затем он разделил общий ряд на периоды и составил из этих отрезков свой «Опыт системы элементов». Все содержание статьи неоспоримо свидетельствует о том, что в этой статье Д.И. отразил, обобщил и подытожил тот путь, каким он шел в день 17 февраля 1869 г. При создании периодической системы элементов.

4. После дня великого открытия

В марте 1869 г., тут же после окончания статьи «Соотношение свойств с атомным весом элементов» Д.И. поехал на артельные сыроварни. Накануне отъезда, 1 марта 1869 г. Он разослал многим химикам отпечатанный листок с «Опытом системы элементов». 6 марта состоялся доклад о системе элементов в заседании русского химического общества.

По причине отсутствия Д.И. в Петербурге, доклад о его открытии сделал профессор Н.А. Меншуткин. В связи с этим позднее возникли различные легенды по этому поводу. Наиболее распространенной стала легенда о мнимой болезни Д.И., которую распространил Б.Н. Меншуткин (сын Н.А. Меншуткина). А М.Н. Младенцев предложил совсем уж невероятное объяснение: «Первое сообщение было сделано 6 марта 1869 г. В заседании Химического общества проф. Н.А. Меншуткиным, так как сам Д.И., видимо, волновался и не решался выступить, хотя ему и ясно было все великое значение настоящего открытия». Все эти легенды ни в коей мере не соответствуют действительности. Причина выступления Меншуткина вместо Менделеева была совсем в другом.

5. Применение Д.И. Менделеевым методов научного познания

Научное открытие такого масштаба, как открытие периодического закона, не могло бы совершиться в столь краткий срок, если бы его автор не владел в совершенстве подлинно научным методом познания, методом научного исследования явлений природы.

1) Метод восхождения.

Метод восхождения отвечает движению познания от непосредственно данного, исходного, к раскрываемому лишь опосредованно, при помощи абстрактного мышления. Следовательно, метод восхождения в самой общей форме выражает то обстоятельство, что развитие мысли в ходе научного познания, как и всякое развитие совершается не хаотически, а в определенном направлении, строго последовательно. Сам Д.И. писал: «Познание и полное обладание предметами состоит из трех степеней: 1) наблюдение, констатирование факта, я вижу, но не знаю, как сделать, отчего и пр. Ему соответствует описание, изучение факта. 2) Соотношение факта с некоторыми другими – закон, этому соответствует измерение. 3) Теория – связь внутренняя с цельным миросозерцанием… начинается гипотезою, кончается теоретическим открытием новых явлений, выводом всего из одного положения. Этому соответствует предсказание явления в совершенной его точности, открытие новых явлений».

Таким образом, становится понятно, что, вопреки существующим в нашей литературе мнениям, Д.И. не был приверженцем только индуктивного метода. Индукцию в ее правильном понимании Д.И. не противопоставляет дедукции, а фактически рассматривает в единстве с ней.

При таком методе познания происходит переход от простейших «клеточек», как их назвал сам Д.И. к более общим законам. Такой «клеточкой» стало рассмотрение в 1-ой части «Основ химии» поваренной соли NaCl. Можно сказать, что, выбрав NaCl в качестве исходного вещества при изложении систематической части химии, Д.И. выбрал нечто простое, обычное, множество раз встречающееся в практике человека. Именно такой и должна быть «клеточка» науки, с которой следует начинать изложение этой науки. Дело в том, что в этом соединении уже были даны в их естественной связи (химической) представители двух наиболее характерных, причем полярно противоположных, химических элементов – Na и Cl отправляясь от соотношения обоих этих элементов, существующего в самой природе, Д.И. нашел сразу ключ к дальнейшему развитию своей творческой мысли. Именно отсюда вытекала необходимость сопоставить две группы наиболее несходных между собой элементов – галогенов и щелочных металлов.

Следует еще отметить, что на всем протяжении совершаемого открытия Д.И. строго придерживался выработавшейся последовательности – переходить от известного к неизвестному и от более известного к менее известному.

Всякий закон в науке устанавливается в итоге обобщения. Тем самым рассмотрение метода восхождения непосредственно приводит к рассмотрению другого, связанного с ним метода, который можно назвать методом обобщения.

2) Метод обобщения. Переход от особенного ко всеобщему.

Путь познания любого закона природы исторически, вполне закономерно проходит отдельные ступени. В общем случае таких ступеней можно выделить три:

а) Исходным является собирание или накопление отдельных, единичных фактов, относящихся к изучаемому кругу явлений. Регистрируя каждый такой отдельный факт, мы высказываем полученный нами результат в форме единичности .

б) По мере накопления отдельных фактов во избежание того, чтобы не образовался неразличимый хаос данных, мы группируем или классифицируем собранный материал. Мы соединяем все сходное в одну особую группу, отличая ее от столь же особых категорий или групп. Соответственно этому мы выражаем достигнутый теперь результат в форме особенности .

в) Разбивка известных фактов на разобщенные между собой особые группы по признаку их особых свойств и на основе учета сходства, противопоставленного различию, лежит в основе искусственных или формальных классификаций. Естественная же классификация предполагает прежде всего нахождение общего признака или общей основы, лежащей в фундаменте всего данного круга явлений, и объединяющей собой все разобщенные группы. В соответствии с этим за ступенью особенности всегда следует та высшая ступень познания, на которой открывается закон природы. Открывая закон природы, мы выражаем достигнутый результат в форме всеобщности .

Таким образом, путь познания закона – это путь движения научной мысли от единичности (свойства отдельных элементов) к особенности (группы сходных по свойствам элементов) и от особенности к всеобщности (периодический закон).

Развитие научного познания, идущего от единичного через особенное ко всеобщему, может быть охарактеризовано в соответствии с тем, как логически соотносятся между собой различные звенья в общей цепи поступательного движения научной мысли. Если совокупность всех взаимосвязанных элементов принять за целое, то разбивку элементов на различные обособленные между собой группы мы можем рассматривать как деление целого на части. В таком случае переход от отдельных, обособленных групп к общей системе выступит как переход от анализа к синтезу. Напротив, вычленение или выделение из общей системы отдельных групп элементов будет означать обратное движение от синтетического подхода к аналитическому. По сути дела вся стадия разбивки элементов на их естественные группы представляет собой стадию анализа, если ее рассматривать по отношению ко всей совокупности химических элементов. Но вместе с тем, если ее брать по отношению к отдельным элементам, она выступает уже как подготовка перехода к синтезу через объединение элементов в некоторые новые единицы – группы, из которых, как из строительных кирпичиков можно будет построить здание целостной, охватывающей все элементы системы, т.е. осуществить теоретический синтез. В ходе открытия периодического закона и создания системы элементов выпукло проявилась взаимосвязь между синтезом и анализом в познавательном процессе – подготовительная функция анализа и заключительная синтеза.

3) Сравнительный метод

Суть метода, который Д.И. называл сравнительным, состоит в том, что элементы рассматриваются не изолированно, не сами по себе, а в их общей взаимной связи и в их взаимных отношениях. Уже на первых порах его применения сравнительный метод дал громадный выигрыш, так как позволял не только сопоставлять разные группы элементов между собой, но и проверять, насколько их сопоставление проведено правильно, а в связи с этим, насколько правильно составлены и сами группы.

Будучи исходным пунктом для разработки и применения сравнительного метода, сличение атомных весов подводило непосредственно к формулировке самого периодического закона, основанной на признании, что «величина атомного веса определяет характер элемента…».

Развитие Д.И. сравнительного подхода к изучению элементов вылилось 17 февраля 1869 г. В конкретную задачу: составить общую систему и найти в ней естественное место для каждой группы, а тем самым для каждого отдельного элемента.

С одной стороны, периодический закон был открыт при помощи сравнительного метода, а с другой – его открытие явилось мощным стимулом к дальнейшему совершенствованию этого метода.


Заключение

периодический менделеев познание научный

В отличие от своих предшественников, Менделеев не только составил таблицу и указал на наличие несомненных закономерностей в численных величинах атомных весов, но и решился назвать эти закономерности общим законом природы. Он взял на себя смелость на основании предположения, что атомная масса предопределяет свойства элемента, изменить принятые атомные веса некоторых элементов и подробно описать свойства неоткрытых ещё элементов.

Д.И. Менделеев на протяжении многих лет боролся за признание Периодического закона; его идеи получили признание только после того, как были открыты предсказанные Менделеевым элементы: галлий (П. Лекок де Буабодран, 1875), скандий (Л. Нильсен, 1879) и германий (К. Винклер1886) – соответственно экаалюминий, экабор и экасилиций. С середины 1880-х годов Периодический закон был окончательно признан в качестве одной из теоретических основ химии.

Хотя классификация Менделеева и имела значительные достоинства, которые способствовали ее быстрому распространению и превращению в руководящий критерий для исследований в области неорганической химии, она не была полностью лишена недостатков. Первый недостаток таблицы заключался в том, что водород, как одновалентный элемент был помещен в начале I группы. Помещение элементов меди, серебра и золота в I группе вместе со щелочными металлами и в VIII группе вместе с металлами группы железа и группы платины явно непоследовательно. Другие отклонения замечаются в VI, VII, и VIII группах.

Для того, чтобы периодическая система приобрела еще большую предсказательную силу и могла быть усовершенствована, имели значение работы по неорганической химии, проведенные в последние десятилетия XIX века. Толчком к пересмотру классификации послужили исследования редких земель, которые привели к выделению многих элементов, не поддававшихся обычному способу классификации, и к открытию благородных газов Рамзаем и Рэлеем

В начале XX века Периодическая система элементов неоднократно видоизменялась для приведения в соответствие с новейшими научными данными. Д.И. Менделеев и У. Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошли инертные газы. Инертные газы явились, таким образом, элементами, переходными между галогенами и щелочными металлами. Б. Браунер нашёл решение проблемы размещения в таблице редкоземельных элементов, предложив в 1902 г. помещать все РЗЭ в одну ячейку; в предложенном им длинном варианте таблицы шестой период таблицы был длиннее, чем четвёртый и пятый, которые в свою очередь длиннее, чем второй и третий периоды.

Дальнейшее развитие Периодического закона в было связано с успехами физики: установление делимости атома на основании открытия электрона и радиоактивности в конце концов позволило понять причины периодичности свойств химических элементов и создать теорию Периодической системы.

Мощный толчок для новых исследований внутренней природы элементов был дан открытием в 1898 г. супругами Кюри радия и тем комплексом явлений, которые известны под названием радиоактивности.

Для химии серьёзную проблему составляла необходимость размещения в Периодической таблице многочисленных продуктов радиоактивного распада, имеющих близкие атомные массы, но значительно отличающиеся периоды полураспада. Т. Сведберг в 1909 г. доказал, что свинец и неон, полученные в результате радиоактивного распада и отличающиеся по величине атомных масс от «обычных» элементов, химически им полностью тождественны. В 1911 г. Ф. Содди предложил размещать химически неразличимые элементы, имеющие различные атомные массы (изотопы) в одной ячейке таблицы.

В 1913 г. английский физик Г. Мозли установил, что корень из характеристической частоты рентгеновского излучения элемента (н) линейно зависит от целочисленной величины – атомного номера (Z), который совпадает с номером элемента в Периодической таблице:

где А и b – константы

Закон Мозли дал возможность экспериментально определить положение элементов в Периодической таблице. Атомный номер, совпадающий, как предположил в 1911 г. голландский физик А. Ван Ден Брук, с величиной положительного заряда ядра атома, стал основой классификации химических элементов. В 1920 г. английский физик Дж. Чедвик экспериментально подтвердил гипотезу Ван ден Брука; тем самым был раскрыт физический смысл порядкового номера элемента в Периодической системе. Периодический закон получил современную формулировку: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер атомов элементов».

В 1921–1923 гг., основываясь на модели атома Бора-Зоммерфельда, представляющей собой компромисс между классическими и квантовыми представлениями, Н. Бор заложил основы формальной теории Периодической системы. Причина периодичности свойств элементов, как показал Бор, заключалась в периодическом повторении строения внешнего электронного уровня атома.


Список использованных источников

1. Кедров Б.М. День одного великого открытия. – М.: Эдиториал УРСС, 2001. – 640 с.

2. Ахметов Н.С. Актуальные вопросы курса неорганической химии. – М.: Просвещение, 1991. – 224 с.

3. Корольков Д.В. Основы неорганической химии. – М.: Просвещение, 1982. – 271 с.

4. Джуа М. История химии. – М.: Мир, 1975. – 480 с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Биография

2. Мастер чемоданных дел

Список литературы

Биография

Дмитрий Иванович Менделеев (1834-1907) - великий русский ученый-энциклопедист, химик, физик, технолог, геолог и даже метеоролог. Менделеев обладал удивительно ясным химическим мышлением, он всегда ясно представлял конечные цели своей творческой работы: предвидение и пользу. Он писал: "Ближайший предмет химии составляет изучение однородных веществ, из сложения которых составлены все тела мира, превращений их друг в друга и явлений, сопровождающих такие превращения".

Русский ученый, член - кореспондент Петербургской АН (с 1876 г.). Родился в Тобольске. Окончил Главный педагогический институт в Петербурге (1855 г.). В 1855-1856 гг. - учитель гимназии при Ришельевском лицее в Одессе. В 1857-1890 гг. преподавал в Петербургском университете (с 1865 г. - профессор), одновременно в 1863-1872 гг. - профессор Петербургского технологического института. В 1859-1861 гг. находился в научной командировке в Гейдельберге. В 1890 г. покинул университет из-за конфликта с министром просвещения, который во время студенческих волнений отказался принять от Менделеева петицию студентов. С 1892 г. - ученый-хранитель Депо образцовых гирь и весов, которое в 1893 г. по его инициативе было преобразовано в Главную палату мер и весов (с 1893 г. - управляющий).

Научные работы относятся преимущественно к той дисциплине, которую называют общей химией, а также к физике, химической технологии, экономике, сельскому хозяйству, метрологии, географии, метеорологии.

Исследовал (1854-1856 гг.) явления изоморфизма, раскрывающие отношения между кристаллической формой и химическим составом соединений, а также зависимость свойств элементов от величины их атомныхобъемов. Открыл (1860 г.) "температуру абсолютного кипения жидкостей", или критическую.

Работая над трудом "Основы химии", открыл (февраль 1869 г.) один из фундаментальных законов природы - Периодический закон химических элементов.

Развил (1869-1871 гг.) идеи периодичности, ввел понятие о месте элемента в Периодической системе как совокупности его свойств в сопоставлении со свойствами других элементов. На этой основе исправил значения атомных масс многих элементов (бериллия, индия, урана и др.).

Предсказал (1870 г.) существование, вычислил атомные массы и описал свойства трех еще не открытых элементов - "экаалюминия" (открыт в 1875 г. и назван галлием), "экабора" (открыт в 1879 г. и назван скандием) и "экасилиция" (открыт в 1885 г. и назван германием). Затем предсказал существование еще восьми элементов, в том числе "двителлура" - полония (открыт в 1898 г.), "экаиода" - астата (открыт в 1942-1943 гг.), "двимарганца" - технеция (открыт в 1937 г.), "экацезия" - Франция (открыт в 1939 г.).

В 1900 г. Менделеев и У. Рамзай пришли к выводу о необходимости включения в Периодическую систему элементов особой, нулевой группы благородных газов. Помимо выявившейся необходимости исправления атомных масс элементов, уточнения формул оксидов и валентности элементов в соединениях, Периодический закон направил дальнейшие работы химиков и физиков на изучение строения атомов, установление причин периодичности и физического смысла закона.

Менделеев систематически занимался изучением растворов и изоморфных смесей. Сконструировал (1859 г.) пикнометр - прибор для определения плотности жидкости. Создал (1865-1887 гг.) гидратную теорию растворов. Развил идеи о существовании соединений переменного состава.

Исследуя газы, нашел (1874 г.) общее уравнение состояния идеального газа, включающее как частность зависимость состояния газа от температуры, обнаруженную (1834 г.) физиком Б. П. Э. Клапейроном (уравнение Клапейрона-Менделеева).

Выдвинул (1877 г.) гипотезу происхождения нефти из карбидов тяжелых металлов; предложил принцип дробной перегонки при переработке нефтей.

Выдвинул (1880 г.) идею подземной газификации углей.

Занимался вопросами химизации сельского хозяйства. Совместно с И. М. Чельцовым принимал участие (1890-1892 гг.) в разработке бездымного пороха. Создал физическую теорию весов, разработал конструкции коромысла, точнейшие методы взвешивания.

Член многих академий наук и научных обществ. Один из основателей Русского физико-химического общества (1868 г.). В его честь назван элемент № 101 - менделевий.

АН СССР учредила (1962 г.) премию и Золотую медаль им. Д. И. Менделеева за лучшие работы по химии и химической технологии.

Менделеев и Периодический закон.

За четыре года до открытия Периодического закона Д.И. Менделеев, наконец, обрел спокойствие в семейных делах и уверенность в своих действиях. В 1865 году он купил имение Боблово недалеко от Клина и получил возможность заниматься агрохимией, которой тогда увлекался, и отдыхать там с семьей каждое лето.

В 1867 году Менделеев стал заведовать кафедрой общей и неорганической химии физико-математического факультета Петербургского университета, а в конце года ему предоставили долгожданную университетскую квартиру. В мае 1868 года у Менделеевых родилась любимая дочь Ольга.

Жизнь не всегда была благосклонна к Менделееву: были в ней и разрыв с невестой, и недоброжелательность коллег, неудачный брак и затем развод... Два года (1880 и 1881) были очень тяжелыми в жизни Менделеева. В декабре 1880 года Петербургская академия наук отказала ему в избрании академиком: "за" проголосовало девять, а "против" - десять академиков. Особенно неблаговидную роль при этом сыграл секретарь академии некто Веселовский. Он откровенно заявил: "Мы не хотим университетских. Если они и лучше нас, то нам все-таки их не нужно".

В 1881 году с большим трудом был расторгнут брак Менделеева с первой женой, совершенно не понимавшей мужа и упрекавшей его в отсутствии внимания.

2. Мастер чемоданных дел

Любимым занятием на досуге у Менделеева в течение многих лет было изготовление чемоданов и рамок для портретов. Припасы для этих работ он закупал в Гостином дворе. Однажды, выбирая нужный товар, Менделеев услыхал за спиной вопрос одного из покупателей:

- "Кто этот почтенный господин?"

- "Таких людей знать надо, - с уважением в голосе ответил приказчик. - Это мастер чемоданных дел Менделеев".

В 1895 году Менделеев ослеп, но продолжал руководить Палатой мер и весов. Деловые бумаги ему зачитывали вслух, распоряжения он диктовал секретарю, а дома вслепую продолжал клеить чемоданы. Профессор И. В. Костенич за две операции удалил катаракту, и вскоре зрение вернулось…

Но вернемся к 1867 году.

Зимой 1867-68 года Менделеев начал писать учебник "Основы химии" и сразу столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что свойства простых веществ (а это есть форма существования химических элементов в свободном состоянии) и атомные массы элементов связывает некая закономерность.

Менделеев многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс и о возникающих при этом казусах. Например, он не имел почти никакой информации о работах Шанкуртуа, Ньюлендса и Мейера.

Решающий этап его раздумий наступил 1 марта 1869 года (14 февраля по старому стилю). Днем раньше Менделеев написал прошение об отпуске на десять дней для обследования артельных сыроварен в Тверской губернии: он получил письмо с рекомендациями по изучению производства сыра от А. И. Ходнева - одного из руководителей Вольного экономического общества.

В Петербурге в этот день было пасмурно и морозно. Под ветром поскрипывали деревья в университетском саду, куда выходили окна квартиры Менделеева. Еще в постели Дмитрий Иванович выпил кружку теплого молока, затем встал, умылся и пошел завтракать. Настроение у него было чудесное.

Неожиданная мысль.

За завтраком Менделееву пришла неожиданная мысль: сопоставить близкие атомные массы различных химических элементов и их химические свойства.

Недолго думая, на обратной стороне письма Ходнева он записал символы хлора Cl и калия K с довольно близкими атомными массами, равными соответственно 35,5 и 39 (разница всего в 3,5 единицы). На том же письме Менделеев набросал символы других элементов, отыскивая среди них подобные "парадоксальные" пары: фтор F и натрий Na, бром Br и рубидий Rb, иод I и цезий Cs, для которых различие масс возрастает с 4,0 до 5,0, а потом и до 6,0. Менделеев тогда не мог знать, что "неопределенная зона" между явными неметаллами и металлами содержит элементы - благородные газы, открытие которых в дальнейшем существенно видоизменит Периодическую систему.

После завтрака Менделеев закрылся в своем кабинете. Он достал из конторки пачку визитных карточек и стал на их обратной стороне писать символы элементов и их главные химические свойства.

Через некоторое время домочадцы услышали, как из кабинета стало доноситься: "У-у-у! Рогатая. Ух, какая рогатая! Я те одолею. Убью-у!" Эти возгласы означали, что у Дмитрия Ивановича наступило творческое вдохновение.

Менделеев перекладывал карточки из одного горизонтального ряда в другой, руководствуясь значениями атомной массы и свойствами простых веществ, образованных атомами одного и того же элемента. В который раз на помощь ему пришло доскональное знание неорганической химии. Постепенно начал вырисовываться облик будущей Периодической системы химических элементов.

Так, вначале он положил карточку с элементом бериллием Be (атомная масса 14) рядом с карточкой элемента алюминия Al (атомная масса 27,4), по тогдашней традиции приняв бериллий за аналог алюминия. Однако затем, сопоставив химические свойства, он поместил бериллий над магнием Mg. Усомнившись в общепринятом тогда значении атомной массы бериллия, он изменил ее на 9,4, а формулу оксида бериллия переделал из Be 2 O 3 в BeO (как у оксида магния MgO). Кстати, "исправленное" значение атомной массы бериллия подтвердилось только через десять лет. Так же смело действовал он и в других случаях.

Постепенно Дмитрий Иванович пришел к окончательному выводу, что элементы, расположенные по возрастанию их атомных масс, выказывают явную периодичность физических и химических свойств.

В течение всего дня Менделеев работал над системой элементов, отрываясь ненадолго, чтобы поиграть с дочерью Ольгой, пообедать и поужинать.

Вечером 1 марта 1869 года он набело переписал составленную им таблицу и под названием "Опыт системы элементов, основанной на их атомном весе и химическом сходстве" послал ее в типографию, сделав пометки для наборщиков и поставив дату "17 февраля 1869 года" (это по старому стилю).

Так был открыт Периодический закон, современная формулировка которого такова:

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядер их атомов.

Менделееву тогда было всего 35 лет.

Отпечатанные листки с таблицей элементов Менделеев разослал многим отечественным и зарубежным химикам и только после этого выехал из Петербурга для обследования сыроварен.

До отъезда он еще успел передать Н. А. Меншуткину, химику-органику и будущему историку химии, рукопись статьи "Соотношение свойств с атомным весом элементов" - для публикации в Журнале Русского химического общества и для сообщения на предстоящем заседании общества.

18 марта 1869 года Меншуткин, который был в то время делопроизводителем общества, сделал от имени Менделеева небольшой доклад о Периодическом законе. Доклад сначала не привлек особого внимания химиков, и Президент русского химического общества, академик Николай Зинин (1812-1880) заявил, что Менделеев делает не то, чем следует заниматься настоящему исследователю. Правда, через два года, прочтя статью Дмитрия Ивановича "Естественная система элементов и применение ее к указанию свойств некоторых элементов", Зинин изменил свое мнение и написал Менделееву: "Очень, очень хорошо, премного отличных сближений, даже весело читать, дай Бог Вам удачи в опытном подтверждении Ваших выводов. Искренне Вам преданный и глубоко Вас уважающий Н. Зинин".

3. Так что же такое периодичность?

Это повторяемость химических свойств простых веществ и их соединений при изменении порядкового номера элемента Z и появление у ряда свойств максимумов и минимумов, в зависимости от значения порядкового (атомного) номера элемента.

Например, что позволяет объединить в одну группу все щелочные элементы? менделеев периодический закон химия

Прежде всего, повторяемость через некоторые интервалы значений Z электронной конфигурации. Атомы всех щелочных элементов имеют на внешней атомной орбитали всего один электрон, и поэтому в своих соединениях проявляют одну и ту же степень окисления, равную +I. Формулы их соединений однотипны: у хлоридов MCl, у карбонатов - М 2 СO 3 , у ацетатов - CH 3 COOM и так далее (здесь буквой M обозначен щелочной элемент).

Менделееву после открытия Периодического закона предстояло сделать еще многое. Причина периодического изменения свойств элементов оставалась неизвестной, не находила объяснения и сама структура Периодической системы, где свойства повторялись через семь элементов у восьмого. Однако с этих чисел был снят первый покров таинственности: во втором и третьем периодах системы находилось тогда как раз по семь элементов.

Не все элементы Менделеев разместил в порядке возрастания атомных масс; в некоторых случаях он больше руководствовался сходством химических свойств. Так, у кобальта Co атомная масса больше, чем у никеля Ni, у теллура Te она также больше, чем у иода I, но Менделеев разместил их в порядке Co - Ni, Te - I, а не наоборот. Иначе теллур попадал бы в группу галогенов, а иод становился родственником селена Se.

Самое же важное в открытии Периодического закона - предсказание существования еще не открытых химических элементов. Под алюминием Al Менделеев оставил место для его аналога "экаалюминия", под бором B - для "экабора", а под кремнием Si - для "экасилиция". Так назвал Менделеев еще не открытые химические элементы. Он даже дал им символы El, Eb и Es.

По поводу элемента "экасилиция" Менделеев писал: "Мне кажется, наиболее интересным из несомненно недостающих металлов будет тот, который принадлежит к IV группе аналогов углерода, а именно, к III ряду. Это будет металл, следующий тотчас же за кремнием, и потому назовем его экасилицием". Действительно, этот еще не открытый элемент должен был стать своеобразным "замкОм", связывающим два типичных неметалла - углерод C и кремний Si - с двумя типичными металлами - оловом Sn и свинцом Pb.

Не все зарубежные химики сразу оценили значение открытия Менделеева. Уж очень многое оно меняло в мире сложившихся представлений.

Так, немецкий физикохимик Вильгельм Оствальд, будущий лауреат Нобелевской премии, утверждал, что открыт не закон, а принцип классификации "чего-то неопределенного". Немецкий химик Роберт Бунзен, открывший в 1861 году два новых щелочных элемента, рубидий Rb и цезий Cs, писал, что Менделеев увлекает химиков "в надуманный мир чистых абстракций".

Профессор Лейпцигского университета Герман Кольбе в 1870 году назвал открытие Менделеева "спекулятивным".

Кольбе отличался грубостью и неприятием новых теоретических воззрений в химии. В частности, он был противником теории строения органических соединений и в свое время резко обрушился на статью Якоба Вант-Гоффа "Химия в пространстве". Позднее Вант-Гофф за свои исследования стал первым Нобелевским лауреатом. А ведь Кольбе предлагал таких исследователей, как Вант-Гофф, "исключить из рядов настоящих ученых и зачислить их в лагерь спиритов"!

С каждым годом Периодический закон завоевывал все большее число сторонников, а его открыватель - все большее признание.

В лаборатории Менделеева стали появляться высокопоставленные посетители, в том числе даже великий князь Константин Николаевич, управляющий морским ведомством.

Наконец, пришло время триумфа. В 1875 году французский химик Поль-Эмиль Лекок де Буабодран открыл в минерале вюртците - сульфиде цинка ZnS - предсказанный Менделеевым "экаалюминий" и назвал его в честь своей родины галлием Ga (латинское название Франции - "Галлия").

Он писал: "Я думаю, нет необходимости настаивать на огромном значении подтверждения теоретических выводов господина Менделеева".

Заметим, что в названии элемента есть намек и на имя самого Буабодрана. Латинское слово "галлус" означает петух, а по-французски петух - "ле кок". Это слово есть и в имени первооткрывателя. Что имел в виду Лекок де Буабодран, когда давал название элементу - себя или свою страну - этого, видимо, уже никогда не выяснить.

Менделеев точно предсказал свойства экаалюминия: его атомную массу, плотность металла, формулу оксида El 2 O 3 , хлорида ElCl 3 , сульфата El 2 (SO 4) 3 . После открытия галлия эти формулы стали записывать как Ga 2 O 3 , GaCl 3 и Ga 2 (SO 4) 3 .

Менделеев предугадал, что это будет очень легкоплавкий металл, и действительно, температура плавления галлия оказалась равной 29,8 о С. По легкоплавкости галлий уступает только ртути Hg и цезию Cs.

В 1879 году шведский химик Ларс Нильсон открыл скандий, предсказанный Менделеевым как экабор Eb. Нильсон писал: "Не остается никакого сомнения, что в скандии открыт экабор.

Так подтверждаются нагляднейшим образом соображения русского химика, которые не только дали возможность предсказать существование скандия и галлия, но и предвидеть заранее их важнейшие свойства".

Скандий получил название в честь родины Нильсона Скандинавии, а открыл он его в сложном минерале гадолините, имеющем состав Be 2 (Y,Sc) 2 FeO 2 (SiO 4) 2 .

В 1886 году профессор Горной академии во Фрайбурге немецкий химик Клеменс Винклер при анализе редкого минерала аргиродита состава Ag 8 GeS 6 обнаружил еще один элемент, предсказанный Менделеевым. Винклер назвал открытый им элемент германием Ge в честь своей родины, но это почему-то вызвало резкие возражения со стороны некоторых химиков.

Они стали обвинять Винклера в национализме, в присвоении открытия, которое сделал Менделеев, уже давший элементу имя "экасилиций" и символ Es. Обескураженный Винклер обратился за советом к самому Дмитрию Ивановичу. Тот объяснил, что именно первооткрыватель нового элемента должен дать ему название.

Предугадать существование группы благородных газов Менделеев не мог, и им поначалу не нашлось места в Периодической системе.

Открытие аргона Ar английскими учеными У. Рамзаем и Дж. Релеем в 1894 году сразу же вызвало бурные дискуссии и сомнения в Периодическом законе и Периодической системе элементов.

Менделеев вначале посчитал аргон аллотропной модификацией азота и только в 1900 году под давлением непреложных фактов согласился с присутствием в Периодической системе "нулевой" группы химических элементов, которую заняли другие благородные газы, открытые вслед за аргоном. Теперь эта группа известна под номером VIIIА.

В 1905 году Менделеев написал: "По-видимому, периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает, хотя как русского меня хотели затереть, особенно немцы".

Открытие Периодического закона ускорило развитие химии и открытие новых химических элементов.

Список литературы

Алимарин И.П. Энциклопедия школьника. - М.: «Советская энциклопе- дия», 1975.

Фельдман Ф.Г., Рудзитис Г.Е. Химия. - 3-е изд. - М.: «Просвещение», 1994.

Химия. Большой справочник для школьников и поступающих в вузы. - 2-е изд. - М.: «Дрофа», 1999.

Семененко К.Н. Химия. - 2-е издание. - М.: «Мир», 1972.

Размещено на Allbest.ru

...

Подобные документы

    Открытие Д.И. Менделеевым периодического закона химических элементов. Неорганическая химия с точки зрения периодического закона в труде "Основы химии". Полет на воздушном шаре, наблюдение за затмением. Проблемы освоения Арктики. Другие увлечения ученого.

    презентация , добавлен 29.11.2013

    Биографические сведения о жизни великого ученого Менделеева, его семья, научная деятельность. Открытие Менделеевым периодического закона химических элементов - одного из основных законов естествознания. Его проект арктического экспедиционного ледокола.

    презентация , добавлен 01.10.2012

    Д.И. Менделеев - русский учёный-энциклопедист, профессор, член-корреспондент Императорской Академии наук, автор классического труда "Основы химии". Биография, становление учёного, научная деятельность. Открытие периодического закона химических элементов.

    презентация , добавлен 28.05.2015

    Изучение биографии и жизненного пути ученого Д. Менделеева. Описания разработки стандарта для русской водки, изготовления чемоданов, открытия периодического закона, создания системы химических элементов. Анализ его исследований в области состояния газов.

    презентация , добавлен 16.09.2011

    Исследование истории семьи Д.И. Менделеева - создателя периодического закона химических элементов - одного из основных законов естествознания. Малоизвестные подробности из истории рождения и жизни внучки Менделеева - Наталье Алексеевне Трироговой.

    доклад , добавлен 02.03.2008

    Исторические сведения о Д.И. Менделееве. Биографические сведения. "Мастер чемоданных дел". Общественная и промышленная деятельность. Д.И. Менделеева. Открытие ПСХЭ. Неожиданная мысль. Триумф. Обстоятельства открытия периодического закона.

    реферат , добавлен 26.04.2006

    "Золотой век" мировой культуры. Прогрессивное развитие науки. Периодическая система, или периодическая классификация, химических элементов и ее значение для развития неорганической химии во второй половине XIX века. Таблица Менделеева и ее видоизменение.

    реферат , добавлен 26.02.2011

    Развитие науки в XIX веке, послужившее основой для последующего технического прогресса. Биографические данные и научные открытия великих ученых, проводивших исследования в области физики, химии, астрономии, фармацевтики, биологии, медицины, генетики.

    презентация , добавлен 15.05.2012

    Выдающиеся научные открытия XIX века в области физики, биологии, физиологии человека, психологии, географии, медицины и в других науках. Научные достижения Ж.Б. Ламарка, Н.И. Пирогова, Н.И. Лобачевского, А.Г. Столетова, А.П. Бородина, Ф.А. Бредихина.

    презентация , добавлен 05.05.2014

    Биографические сведения о жизни Д. Менделеева - русского учёного-энциклопедиста. Хроника его творческой жизни. Обоснование Менделеевым главных направлений хозяйственного развития России, изобретение пироколлодийного пороха, его научные труды и учебники.



Поделиться