Задача B7 — логарифмические, показательные и иррациональные уравнения.

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению . В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике « » в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств , как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией .

Основные свойства показательной функции y = a x :

График показательной функции

Графиком показательной функции является экспонента :

Графики показательных функций (экспоненты)

Решение показательных уравнений

Показательными называются уравнения, в которых неизвестная переменная находится только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Теорема 1. Показательное уравнение a f (x ) = a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

Title="Rendered by QuickLaTeX.com">

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

Title="Rendered by QuickLaTeX.com">

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Ответ: x = 6.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x .

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x -2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f (x ) > a g (x ) равносильно неравенству того же смысла: f (x ) > g (x ). Если 0 < a < 1, то показательное неравенство a f (x ) > a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение: представим исходное неравенство в виде:

Разделим обе части этого неравенства на 3 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Воспользуемся подстановкой:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t :

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

t , находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x +2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x +2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x +2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.


Сергей Валерьевич

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Все задачи B7, которые мне доводилось видеть, были сформулированы примерно одинаково: решить уравнение. При этом сами уравнения относятся к одному из трех видов:

  1. Логарифмические;
  2. Показательные;
  3. Иррациональные.

Вообще говоря, полноценное руководство по каждому типу уравнений займет не один десяток страниц, выходя далеко за рамки ЕГЭ. Поэтому мы рассмотрим лишь самые простые случаи, требующие незатейливых рассуждений и выкладок. Этих знаний будет вполне достаточно, чтобы решить любую задачу B7.

В математике термин «решить уравнение» означает найти множество всех корней данного уравнения, либо доказать, что это множество пусто. Но в бланк ЕГЭ можно вписывать только числа — никаких множеств. Поэтому, если в задании B7 оказалось больше одного корня (или, наоборот, ни одного) — в решении была допущена ошибка.

Логарифмические уравнения

Логарифмическое уравнение — это любое уравнение, которое сводится к виду log a f (x ) = k , где a > 0, a ≠ 1 — основание логарифма, f (x ) — произвольная функция, k — некоторая постоянная.

Такое уравнение решается внесением постоянной k под знак логарифма: k = log a a k . Основание нового логарифма равно основанию исходного. Получим уравнение log a f (x ) = log a a k , которое решается отбрасыванием логарифма.

Заметим, что по условию a > 0, поэтому f (x ) = a k > 0, т.е. исходный логарифм существует.

Задача. Решить уравнение: log 7 (8 − x ) = 2.

Решение. log 7 (8 − x ) = 2 ⇔ log 7 (8 − x ) = log 7 7 2 ⇔ 8 − x = 49 ⇔ x = −41.

Задача. Решить уравнение: log 0,5 (6 − x ) = −2.

Решение. log 0,5 (6 − x ) = −2 ⇔ log 0,5 (6 − x ) = log 0,5 0,5 −2 ⇔ 6 − x = 4 ⇔ x = 2.

Но что делать, если исходное уравнение окажется сложнее, чем стандартное log a f (x ) = k ? Тогда сводим его к стандартному, собирая все логарифмы в одной стороне, а числа — в другой.

Если в исходном уравнении присутствует более одного логарифма, придется искать область допустимых значений (ОДЗ) каждой функции, стоящей под логарифмом. Иначе могут появиться лишние корни.

Задача. Решить уравнение: log 5 (x + 1) + log 5 (x + 5) = 1.

Поскольку в уравнении присутствуют два логарифма, найдем ОДЗ:

  1. x + 1 > 0 ⇔ x > −1
  2. x + 5 > 0 ⇔ x > −5

Получаем, что ОДЗ — это интервал (−1, +∞). Теперь решаем уравнение:

log 5 (x + 1) + log 5 (x + 5) = 1 ⇒ log 5 (x + 1)(x + 5) = 1 ⇔ log 5 (x + 1)(x + 5) = log 5 5 1 ⇔ (x + 1)(x + 5) = 5 ⇔ x 2 + 6x + 5 = 5 ⇔ x (x + 6) = 0 ⇔ x 1 = 0, x 2 = −6.

Но x 2 = −6 не подходит по ОДЗ. Остается корень x 1 = 0.

Показательные уравнения

Показательное уравнение — это любое уравнение, которое сводится к виду a f (x ) = k , где a > 0, a ≠ 1 — основание степени, f (x ) — произвольная функция, k — некоторая постоянная.

Это определение почти дословно повторяет определение логарифмического уравнения. Решаются показательные уравнения даже проще, чем логарифмические, ведь здесь не требуется, чтобы функция f (x ) была положительна.

Для решения сделаем замену k = a t , где t — вообще говоря, логарифм (t = log a k ), но в ЕГЭ числа a и k будут подобраны так, что найти t будет легко. В полученном уравнении a f (x ) = a t основания равны, а значит, равны и показатели, т.е. f (x ) = t . Решение последнего уравнения, как правило, не вызывает проблем.

Задача. Решить уравнение: 7 x − 2 = 49.

Решение. 7 x − 2 = 49 ⇔ 7 x − 2 = 7 2 ⇔ x − 2 = 2 ⇔ x = 4.

Задача. Решить уравнение: 6 16 − x = 1/36.

Решение. 6 16 − x = 1/36 ⇔ 6 16 − x = 6 −2 ⇔ 16 − x = −2 ⇔ x = 18.

Немного о преобразовании показательных уравнений. Если исходное уравнение отличается от a f (x ) = k , применяем правила работы со степенями:

  1. a n · a m = a n + m ,
  2. a n / a m = a n m ,
  3. (a n ) m = a n · m .

Кроме того, надо знать правила замены корней и дробей на степени с рациональным показателем:

Такие уравнения встречаются в ЕГЭ крайне редко, но без них разбор задачи B7 был бы неполным.

Задача. Решить уравнение: (5/7) x − 2 · (7/5) 2x − 1 = 125/343

Заметим, что:

  1. (7/5) 2x − 1 = ((5/7) −1) 2x − 1 = (5/7) 1 − 2x ,
  2. 125/343 = (5 3) /(7 3) = (5/7) 3 .

Имеем: (5/7) x − 2 · (7/5) 2x − 1 = 125/343 ⇔ (5/7) x − 2 · (5/7) 1 − 2x = (5/7) 3 ⇔ (5/7) x − 2 + 1 − 2x = (5/7) 3 ⇔ (5/7) −x − 1 = (5/7) 3 ⇔ −x − 1 = 3 ⇔ x = −4.

Иррациональные уравнения

Под иррациональным понимается любое уравнение, содержащее знак корня. Из всего многообразия иррациональных уравнений мы рассмотрим лишь простейший случай, когда уравнение имеет вид:

Чтобы решить такое уравнение, возведем обе стороны в квадрат. Получим уравнение f (x ) = a 2 . При этом автоматически выполняется требование ОДЗ: f (x ) ≥ 0, т.к. a 2 ≥ 0. Остается решить несложное уравнение f (x ) = a 2 .

Задача. Решить уравнение:

Возводим обе стороны в квадрат и получим: 5x − 6 = 8 2 ⇔ 5x − 6 = 64 ⇔ 5x = 70 ⇔ x = 14.

Задача. Решить уравнение:

Сначала, как и в прошлый раз, возводим обе стороны в квадрат. А затем внесем знак «минус» в числитель. Имеем:

Заметим, что при x = −4 под корнем будет положительное число, т.е. требование ОДЗ выполнено.

Иррациональные неравенства

Под иррациональным неравенством понимается неравенство, в котором неизвестные величины стоят под знаком радикала. Решение таких неравенств обычно состоит в том, что с помощью некоторых преобразований их заменяют равносильными им рациональными уравнениями, неравенствами или системами уравнений и неравенств (зачастую смешанными системами, т.е. такими, в которые входят как уравнения, так и неравенства), и дальнейшее решение может идти по шагам, изложенным выше. Этими преобразованиями является, кроме замены переменных (введение новых переменных) и разложения на множители, еще и возвышение обеих частей неравенства в одну и ту же степень. Однако, при этом надо следить за равносильностью переходов от одного неравенства к другому. При бездумном возведении в степень корни неравенства могут одновременно и теряться, и приобретаться. Например, возведя в квадрат верное неравенство -1<2, мы получим верное неравенство 1<4; из верного неравенства -5<2 получается уже неверное неравенство 25<4;из неверного неравенства 1<-2 получим верное неравенство 1<4; наконец, из неверного неравенства 5<2 получим неверное неравенство 25<4. Вы видите, что возможны все комбинации верных и неверных неравенств!

Однако верно основное используемое здесь утверждение: если обе части неравенства неотрицательны, то оно равносильно неравенству, полученному из него почленным возведением в степень.

При решении неравенств таким способом нужно следить, чтобы не приобрести посторонних решений. Поэтому полезно там, где это возможно, находить область определения неравенства, а также область возможных значений решений.

Показательные и логарифмические неравенства

Решению показательных и логарифмических неравенств предшествует изучение свойств соответствующих функций; выполнение множества заданий на преобразования показательных и логарифмических выражений; решение уравнений, содержащих логарифмы и переменные в показателе степени. Решение простейших неравенств, которыми считаются

где означает одно из неравенств <,>,.

Дело в том, что обычно данная тема вводится как абсолютно новая, опирающаяся лишь на изученные ранее свойства этих функций. Целесообразно, на мой взгляд, связывать её и с решением неравенств в целом (т.е. с уже известным алгоритмом). Стоит заметить, что на прямую метод интервалов использовать нельзя. Но решение разнообразных показательных и логарифмических неравенств производится на основе следующих правил:

Если a>1, то,

Если 0

Если a>1, то

Если 0

Где знак означает противоположный по значению знаку.

Пользуясь которыми показательные и логарифмические неравенства обычно сводят к рациональным, которые уже можно решать описанным выше методом интервалов.

Неравенства, содержащие тригонометрические функции

Данная тема плохо освещена в учебной литературе, а в некоторых учебниках вообще вынесена за рамки изучаемого курса (о чем уже говорилось в I главе данной работы). Из тригонометрических неравенств рассматриваются, как правило, только простейшие типа

Тогда как задания, представленные в практической части, относящейся к данному пункту, встречаются в сборниках конкурсных задач, в сборниках для абитуриентов и материалах для вступительных экзаменов на технические факультеты ВУЗов. Т.е. данный материал не входит в обязательный для изучения в основной и старшей школе, но является полезным.

Метод интервалов особенно эффективен при решении неравенств, содержащих тригонометрические функции. При решении этим методом чисто тригонометрических неравенств вместо числовой оси удобно использовать числовую окружность, которая корнями соответствующих тригонометрических уравнений (числителя и знаменателя) разбивается на дуги, играющие ту же роль, что и интервалы на числовой оси. На этих дугах тригонометрическое выражение, соответствующее решаемому неравенству, имеет постоянные знаки, для определения которых можно использовать правило отдельной «удобной» точки и свойство кратности корней. Часто для определения самих дуг вовсе не надо находить все (бесконечное) множество корней соответствующих уравнений; достаточно из этих уравнений найти значения основных тригонометрических функций (синуса, косинуса, тангенса, котангенса) и на числовой окружности отметить точки, соответствующие этим значениям.

Использовать числовую окружность непосредственно для решения исходного тригонометрического неравенства метод интервалов можно, если все функции, через которые записано неравенство, имеют основной (наименьший положительный) период или, где m - некоторое целое положительное число. Если основной период этих функций больше или, то следует сначала произвести замену переменных, а затем использовать числовую окружность.

Если неравенство содержит как тригонометрические, так и другие функции, то для решения его методом интервалов следует использовать числовую ось.



Поделиться