Технология возведения опускных колодцев. Опускные колодцы. устройство опускных колодцев. тиксотропная рубашка. тиксотропный раствор

Конструкция опускных колодцев в плане круглого, эллиптического и реже прямоугольного сечения, а по вертикале – цилиндрическая, призматическая, или ступенчатая. В нижней части колодец снабжен режущей кромкой (ножом), обшитой стальными листами (рис. 4).

Рис. 4 Конструкции ножей опускных колодцев

Технологическая последовательность выполнения работ включает в себя:

· установку конструкций колодца на поверхности земли в месте погружения (монтаж сборных элементов и бетонирование монолитных конструкций);

· разработку грунта внутри колодца в направлении от центра к ножу;

· опускание колодца с выдавливанием грунта из под ножа во внутрь;

· наращивание высоты колодца по мере погружения;

· устройства днища или заполнение полости колодца бетоном.

Опускные колодцы разделяются на массивные, применяемые в основном для возведения фундаментов глубокого заложения и тонкостенные, используемые при возведении заглубленных сооружений.

Массивные колодцы , как правило, погружают под воздействием собственного веса под действием вибрации.

Тонкостенные колодцы погружаются в тиксотропной рубашке с использованием пригруза. Тиксотропная рубашка обеспечивает снижение сил бокового трения между стенками колодца и грунтом.

Погружение колодца выполняется при соблюдении определенных условий зависящих от наружного и внутреннего радиусов стен колодца; объемной массы материала стен колодца; уровня грунтовых вод; сил бокового трения. Если в результате выполненных расчетов масса колодца окажется недостаточной, то увеличивают толщину стен, или устраивают тиксотропные рубашки.

Для исключения преждевременного погружения, нож колодца на основание устанавливается на специальные деревянные или бетонные подкладки, которые удаляются в определенной последовательности (одновременно попарно диаметрально противоположные).

Опускные колодцы погружают с водоотливом и без него.

С водоотливом погружение выполняют при малом притоке грунтовых вод при условии, что вблизи нет сооружений чувствительных к осадкам (при данном способе происходит интенсивное движение грунтовых вод внутрь колодца, что вызывает осадку прилегающих к колодцу грунтов). В осушенных колодцах разработку грунта осуществляют в зависимости от размеров колодца и характеристик грунта (экскаватор прямая лопата, кран-бадья, бульдозер, грейфер и взрывной способ рис. 5).

Порядок разработки грунта в колодце состоит в первоначальной разработке средней части на глубину 1.5…2 м не доходя до ножей на 1…3 м. Разработка бермы выполняется в ручную (в редких случаях путем размыва гидромониторами) слоями по 10…15 см и шириной по 20…30 см равномерно по всему периметру колодца, за исключением специально фиксированных зон. Если после разработки берм до фиксированных зон колодец не опускается, то осуществляют одновременную разработку фиксированных зон.

Рис. 5 Схема разработки грунта механизмами.

1 – экскаватор; 2 – кран; 3 – бадья; 4 – автосамосвал; 5 – стены опускного колодца; 6 – опалубка наращиваемого яруса стен.

Погружение опускных колодцев без водоотлива осуществляется при помощи гидроэлеваторов или эрлифтов (рис. 6). Уровень воды в колодце необходимо постоянно поддерживать в пределах уровня грунтовых вод, что предотвращает наплыв грунта из-под ножа во внутрь колодца.

Рис. 6. Схема разработки грунта гидромеханическим методом при помощи гидроэлеватора (а – вода; б – вода; с – вода с грунтом.) и эрлифта (а – воздух; б – вода; с – вода с грунтом)

С целью снижения сил бокового трения опускные колодцы погружают в тиксотропных рубашках . Для этого в полость, возникающую под наружным выступом ножа по трубам расположенными между стенкой опускного колодца и грунтом нагнетают глинистый раствор с тиксотропными свойствами. Силы трения уменьшаются при этом на 90%, оставаясь только в пределах поверхности ножа. Для предотвращения прорыва глинистого раствора в область ножа применяют уплотнитель из листовой резины (рис. 7), а для предотвращения обрушения грунта в верхней части по периметру колодца закрепляют форшахту.

Бетонирование днища колодца при его опускании без водоотлива осуществляют методами подводного бетонирования (вертикальное перемещение трубы или восходящего раствора). После приобретения бетоном днища требуемой прочности воду откачивают и дальнейшие работы осуществляют обычными способами. При погружении колодцев ниже уровня грунтовых вод необходимо производить проверочные расчеты на его возможное всплытие в процессе эксплуатации.

Рис. 7 Погружение опускного колодца в тиксотропной рубашке.

1 – стенка колодца; 2 – глинистый раствор с тиксотропными свойствами; 3 – анкерный болт; 4 – листовая резина; 5 – металлический уголок; 6 – форшахта (швеллер, лист с приваренным уголком); 7 – железобетонное кольцо; 8 – анкерный болт; 9 – грунтовая засыпка;

Опускные колодцы используют при устройстве фундаментов глубокого заложения и различного рода заглубленных сооружений (насосных станций, гаражей, вагоноопрокидывателей, опор мостов и др.).

По форме в плане опускные колодцы бывают круглые, эллиптические, прямоугольные, а по вертикали цилиндрические и призматические, конические и ступенчатые. В нижней части колодец снабжен ножом, режущая кромка которого облицована стальными уголками или листами.

Сущность опускного колодца состоит в том, что конструкцию вначале устанавливают или бетонируют на поверхности земли, а затем внутри нее разрабатывают грунт в направлении от центра к ножу.

Массивные колодцы, как правило, гравитационные, погружаемые под воздействием собственного веса. Тонкостенные колодцы погружают в тиксотропных рубашках или с использованием задавливания.

Опускные колодцы возводят из монолитного, сборного и сборно-монолитного железобетона.

Работы по возведению опускных колодцев включают следующие этапы:

подготовка строительной площадки и приспособлений для погружения;

сооружение стен колодца;

выемка грунта и погружение колодца;

заполнение полости колодца бетоном или устройство днища.

До начала погружения опускного колодца выполняют подготовительные работы, которые заключаются в устройстве пионерного котлована. Дно котлована располагают на 0,5-1 м выше уровня подземных вод.

Основные оси опускных колодцев должны быть закреплены на местности посредством обносок - по две обноски с каждой из четырех сторон сооружений. Обноски устанавливают вне зоны возможных подвижек грунта.



Для уменьшения и равномерной передачи на поверхность грунта давления от первого яруса опускного колодца до начала работ по бетонированию или монтажу под ножевую часть колодца должно быть подготовлено временное основание в виде песчано-щебеночных призм, деревянных или железобетонных подкладок, железобетонных. монолитных или сборных колец.

2. Электропрогрев бетонной смеси.

Электропрогрев бетона основан нэ том, что элекроток,. проходя через влажный бетон, превращается в тепло и нагревает массу бетона, ускоряя тем самым процесс его твердения. Для электропрогрева применяют электроды в виде металлических стержней или пластинок, присоединенных к различным полюсам (фазам) электросети. Замыкание цепи между электродами происходит через влажный бетон, в который заделывают электроды. Схема устройства сети электропрогрева и места установки электродов, расстояние их от арматуры, трансформаторы, групповые щитки и прочее оборудование разрабатываются специальными проектами для каждого отдельного случая. Благодаря электропрогреву время твердения бетона резко сокращается. Бетон на портландцементе к 28-дневному возрасту после электропрогрева приобретает 80 - 90% от прочности бетона, твердеющего в нормальных условиях. Быстротвер-деющие портландцемента с повышением температуры до -f- 50° и выше иногда дают снижение конечной прочности бетона до 25%-. Поэтому при таких цементах полезно перед началом прогрева предварительно выдерживать бетон" при пониженных температурах. Малоактивные и медленно твердеющие портландцемента при благоприятном влажностном режиме могут не давать снижения прочности бетона за счет прогрева. В некоторых случаях добавка хлористого кальция в количестве 3% от веса воды затворения уменьшает потери прочности бетона на портландцементе вследствие прогрева. При этом длительность прогрева бетона на портландцементе может быть сокращена на 25-30%. Особенно хорошие результаты дает добавка хлористого кальция при применении шлако-портландцемента. Во избежание пересушивания электропрогрев бетона, как правило, должен производиться с применением трансформаторов, допускающих понижение напряжения в пределах 50- 90 в. Если же начинается высушивание открытой поверхности бетона, необходимо выключить ток и увлажнить поверхность водой.

Электропрогрев бетона электродами при напряжении 120-380 в допускается только для:

а) неармированных бетонных конструкций;

б) малоармированных железобетонных конструкций с со

держанием арматуры не более 50 кг на 1 мъ бетона; при на

пряжении тока 380 в необходимо осуществлять соединение

электродов с нулевым проводом, чтобы рабочее напряжение

в бетоне не превышало 220 в; применение напряжений выше

380 в запрещается.

Расстояние между электродами и арматурой должно быть не менее половины" расстояния между электродами. Во избежание местного перегрева бетона и -короткого замыкания установленные электроды должны быть надежно закреплены на своих местах.

Прогрев бетона разбивается на два этапа: первый этап - подъем температуры до предельно допустимой и второй - изотермический, который проводится на предельной температуре.

3. Виды арок и их технические параметры . . А́рка - архитектурный элемент, криволинейное перекрытие сквозного или глухого проёма в стене или пролёта между двумя опорами (колоннами, устоями моста). Как и любая сводчатая конструкция, создаёт боковой распор. Как правило, аркисимметричны относительно вертикальной оси.

Арки впервые появились во II тысячелетии до н. э. в архитектуре Древнего Востока, в частности в Древней Месопотамии, где строительство кирпичных сооружений достигло высокого уровня. Широкое распространение также получили арки в архитектуре Древнего Рима

Очертание оси арки может быть самым разнообразным, но чаще встречаются следующие виды:

Очертания осей арок

Циркульная (круговая)

Параболическая

Коробовая

Треугольная

«Ползучая»

Наиболее распространёнными являются следующие типы расчётных схем арок :

Трёхшарнирная арка

Двухшарнирная арка

Бесшарнирная арка

Каждый из типов имеет свои преимущества и недостатки, и выбор той или иной конструкции определяется инженером-проектировщиком исходя как из прочностных требований, так и из необходимости применения тех или иных материалов для арки, архитектурных задач, стоимости и местных условий строительства. Так, например, трёхшарнирная арка является статически определимой системой, в силу чего подобная конструкция не так чувствительна к температурным воздействиям и осадкам опор. Также трёхшарнирные арочные конструкции удобны с точки зрения монтажных работ и транспортировки, так как состоят из двух отдельных частей. Однако наличие дополнительного шарнира приводит к большой разнице моментов по длине обоих частей, что, соответственно, требует дополнительного расхода материала. Противоположна ей в этом плане бесшарнирная арка, которая благодаря защемлению пят арок в опорах имеет наиболее благоприятное распределение моментов по длине и может быть изготовлена с минимальными сечениями. Но защемление в опорах, в свою очередь, приводит к необходимости устройства более мощных фундаментов, арка чувствительная как к перемещениям опор, так и к температурным напряжениям. Наибольшее распространение получила двухшарнирная арка. Являясь единожды статически неопределимой системой, она также имеет хорошее распределение моментов по длине и избавлена от необходимости устройства массивных опор .

Кафедра «ТПГС»

Опускные сооружения

(a. lowered structures; н. Absenkkonstruktionen; ф. constructions descendantes; и. construcciones caedisos, construcciones descendientes ) - разл. назначения, конструкции к-рых возводятся на земной поверхности, a затем опускаются на проектную глубину. Различают O. c.: опускные колодцы, опускную (погружную) крепь, опускные секции, опускные тоннели-кессоны.
Опускные колодцы используются для устройства фундаментов ответств. сооружений или для возведения заглублённых помещений разл. назначения. Впервые их начали применять в Индии св. 2 тыс. лет назад для устройства фундаментов храмов на берегах рек в слабых грунтах; в Европе и России - c кон. 19 в. для устройства опор мостов. Современные опускные колодцы представляют собой полую, открытую сверху и снизу оболочку любого в плане очертания, выполненную из материала, обладающего достаточной прочностью, погружаемую, как правило, за счёт собственного веса в глубь массива по мере выемки из неё грунта (рис.).
замок из плотной ; 4 - оболочка; 5 - тиксотропный раствор; 6 - форшахта">
Рис. Опускной колодец: 1 - банкетка ножа; 2 - ножевая часть; 3 - замок из плотной глины; 4 - оболочка; 5 - тиксотропный раствор; 6 - форшахта.
Опускные колодцы, используемые для устройства фундаментов, имеют, как правило, круглую форму (диаметр до 4 м), глубина опускания достигает 80 м. При возведении заглублённых помещений (водозаборных и канализационных насосных станций, камер дробления горно-обогатит. комбинатов, скиповых ям доменных печей и др.) применяют конструкции значит, размеров в плане (круглые диаметром до 60 м, прямоугольные до 260x60 м); глубина их опускания достигает 60 м.
Осн. конструктивные элементы опускного колодца: ножевая часть, оболочка и днище, к-poe возводится после опускания на проектную глубину. Ножевая часть воспринимает и распределяет нагрузки от стен колодца, способствует его перемещению. Конструкция ножевой части выбирается в зависимости от типа пересекаемых грунтов и материала стен сооружения. Оболочка опускного колодца воспринимает давление окружающего грунта. Изготавливают её из монолитного железобетона (толщина 0,5-3 м) или же сборных плоских панелей (толщина 0,3-0,8 м), крупных пустотелых блоков и др. в зависимости от назначения сооружения. Для уменьшения сил трения стен колодца o применяют т.н. тиксотропную рубашку (рис.), к-рую создают за счёт заполнения тиксотропным раствором полости между наружной поверхностью конструкции и грунтом. Полость шир. 10-15 см образуется за счёт выступа на ножевой части опускного колодца. Для удержания тиксотропного раствора на уступе ножевой части выполняют спец. замок, препятствующий прорыву раствора внутрь колодца по мере выемки грунта. B качестве тиксотропного используют , плотность к-рого подбирается c таким расчётом, чтобы его гидростатич. давление на каждой рассматриваемой глубине было больше бокового давления грунта и грунтовых вод.
B случае, если собственного веса конструкции недостаточно для погружения, прибегают к укладке по периметру оболочки балласта (блоков), создают необходимые усилия c помощью гидродомкратов или используют комбинацию этих способов. После достижения проектной глубины c заглублением ножа в не менее чем на 1 м бетонируют днище колодца.
Скорость опускания колодца зависит от его габаритов и интенсивности выемки грунта. B начальный момент значение её более высокое - в среднем 0,8-0,9 м/сут, к концу опускания - 0,1-0,2 м/сут.
Опускные колодцы широко применяются в США, Японии, Франции и др. странах для устройства фундаментов, сооружений разного назначения и подземных ограждающих конструкций, таких, как хранилища, гаражи, места размещения разл. рода установок и т.п. B перспективе - широкое использование опускных на мощных ГОKax при стр-ве корпусов крупного дробления руд, насосных станций, a также при освоении подземного пространства крупных городов для размещения водозаборных и канализационных насосных станций, подземных складов и гаражей и т.д.
Опускная (погружная) крепь - разновидность опускного колодца, применяемая при стр-ве устьев стволов в неустойчивых водоносных породах или же стволов небольшой глубины (до 50 м) в условиях городской застройки вблизи зданий, сооружений, не допускающих деформаций поверхности. B этих случаях опускная конструкция выполняет роль постоянной крепи. Погружение её на проектную глубину осуществляется, как правило, в тиксотропной "рубашке". Впервые в отечеств. практике погружение крепи шахтного ствола в тиксотропной "рубашке" было осуществлено "Мосметростроем" в 1969. Позже по этой технологии возведён ряд стволов при стр-ве метрополитенов в Москве, Киеве, устьев стволов в неустойчивых грунтах в Донбассе.
Отличие опускных крепей от опускных колодцев заключается в несколько иных конструктивных решениях элементов крепи и технологии погружения. Изготавливается опускная крепь из тюбингов или же из монолитного железобетона. При использовании тюбинговой крепи собств. веса конструкции недостаточно для самостоят. внедрения в грунт и погружения. B этих случаях, как правило, выполняют принудит. задавливание крепи c помощью системы гидродомкратов, для чего используют спец. конструкции опорных воротников.
Опускные секции применяются при стр-ве подводных тоннелей. Секция представляет собой отдельное звено подводного тоннеля дл. до 150 м, изготовляемое из железобетона на стапелях или в сухих доках и сплавляемое к месту прокладки тоннеля. Звенья опускают поочерёдно на подготовленное и стыкуют под водой. Подводные тоннели из опускных секций (c формой поперечного сечения близкой к круговой) начали строить в нач. 20 в. в США. C 30-x гг. широко используют опускные секции прямоугольной формы. Размеры поперечного сечения секции (до 48x10 м) зависят от назначения тоннеля.
B процессе изготовления секции её торцы герметично закрывают временными диафрагмами, оборудованными спец. устройствами, облегчающими процесс стыкования под водой. Диафрагмы несколько углублены относительно торцов секции, чтобы в процессе этой операции между ними образовалось замкнутое пространство - стыковая камера. Изолируют наружную поверхность секций c помощью стальных листов (co стороны лотка), битумом или гибкими рулонными материалами (стены и перекрытия). Для предохранения гибкой изоляции от механич. повреждений её покрывают защитным слоем из слабоармированного бетона, к-рый связывают c железобетоном несущей конструкции спец. анкерами.
Тоннели из опускных секций располагают в подводных котлованах или же на подводной насыпи (рассматриваются проекты установки секций тоннелей на отдельных подводных опорах - т.н. тоннели-мосты). Наиболее распространён в практике стр-ва таких сооружений на глуб. до 30 м способ опускания секций на дно котлована. Глубина последнего назначается c таким расчётом, чтобы после засыпки секции и восстановления прежнего уровня дна водного препятствия над тоннелем залегал грунта толщиной не менее 2 м.
Разработка котлована в зависимости от глубины и физико-механич. свойств грунтов осуществляется c применением агрегатов механич., гидравлич., пневматич. и комбинированного действия. При глубине разработки траншей до 10-12 м используют преим. многочерпаковые и скреперные установки, при большей - землесосы, гидромониторные установки, земснаряды, всасывающие или грейферные землечерпаки. Разработку траншей в полускальных и скальных грунтах производят буровзрывным способом. Крутизна откосов котлована от 1-2 до 1-4 (в зависимости от свойств грунтов). Подготавливают основание неск. способами. Наиболее распространена укладка на дне котлована слоя песка, мелкого гравия или щебня толщиной 50-100 см. B др. случаях для опоры секций используют четыре уголковых железобетонных опорных блока или же кусты свай или анкеров. Доставленные к месту стр-ва тоннеля секции подвешивают через полиспасты к грузоподъёмным механизмам, установленным на плавучих средствах, придают секциям отрицательную плавучесть за счёт заполнения объёма секций балластом и погружают на дно подводной траншеи. Для возможности доступа людей и подачи материалов перед опусканием секций на них устанавливают спец. шахты, a также визирные мачты, по к-рым контролируют положение секций в пространстве. Высота шахт и мачт принимается такой, чтобы они возвышались над водой после установки секций в проектное положение. B зависимости от условий используют разл. технол. схемы стыковки. Пo одной из них, напр. для прямоугольных секций, герметичность стыковой на первоначальной стадии работ обеспечивается c помощью спец. резиновой прокладки. Стыкуемые секции подтягивают друг к другу c помощью гидродомкратов и соединяют шарнирным замком. При этом резиновая прокладка подвергается предварит. обжатию. Окончательное обжатие осуществляется гидростатич. давлением воды на свободный противоположный торец стыкуемой секции за счёт выпуска нек-рого кол-ва воды из стыковой камеры. После полного удаления воды из камеры приступают к разборке торцевых диафрагм и устройству постоянного стыка между секциями. Простейший способ - заделка стыка листовой сталью, привариваемой к закладным деталям на торцах секций, и последующее заполнение полостей за стальной изоляцией бетонной смесью. После стыкования секций котлован засыпают песком, гравием или щебнем заподлицо c дном водотока. Процесс сборки секций в готовый сравнительно малотрудоёмок и относительно краткосрочен (обычно неск. недель или месяцев). Пo описанной технологии в мировой практике построено св. 60 трансп. тоннелей, 14 из них c кон. 70-x гг. - в Нидерландах, Сянгане, США, ФРГ, Югославии, Японии. C этим высокоиндустриальным способом связываются перспективы в стр-ве подземных сооружений через водные преграды.
Опускные тоннели-кессоны используются при стр-ве в наиболее сложных инж.-техн. условиях, когда другие способы (замораживание пород, тампонаж, ) оказываются неэффективными или вовсе неприемлемыми. , как и при применении опускных секций, монтируют из готовых секций, но опускание их на проектную глубину выполняется кессонным способом. Для этого перед погружением торцы секций закрывают временными диафрагмами, под основанием по периметру устраивают кессонную камеру высотой ок. 3 м. Опускание тоннель-кессона под действием собств. веса достигается за счёт устройства внизу кессонной камеры ножевой части опускного колодца. B кессонной камере постоянно поддерживается избыточное давление воздуха, превышающее гидростатич. давление воды. Благодаря этому из забоя кессонной камеры отжимается, грунты частично осушаются. Пo мере их выемки опускной тоннель-кессон погружается. Пo достижении секцией проектных отметок кессонная камера заполняется бетоном, и, таким образом, в основании конструкции образуется мощная бетонная . Смежные секции опускают так, чтобы в проектном положении между ними остался целик грунта толщиной 1-3 м. Для создания непрерывной тоннельной конструкции выполняют соединение секций между собой. Наиболее распространён способ, когда в торцевой части одной из стыкуемых секций устраивают горизонтальную шлюзовую камеру, через к-рую под сжатым воздухом проходят штольню до диафрагмы другой секции. Из штольни раскрывают выработку на всё сечение тоннеля и бетонируют обделку тоннеля в промежутке между секциями.
Кроме недостатков, общих для всех работ, выполняемых под сжатым воздухом, способ опускных тоннелей-кессонов отличается высокой стоимостью, сложностью, много- операционностью и невысокими темпами стр-ва. Развитие способа тоннелей-кессонов идёт в направлении создания кессонов, исключающих нахождение рабочих в зоне сжатого воздуха. Эффективность рассматриваемого способа может быть повышена за счёт погружения тоннелей-кессонов в тиксотропной "рубашке". - сооружения, выполняющие определ. функции в производств. процессе либо предназнач. для восприятия нагрузок от технологич. оборудования, сырья, коммуникаций и пр. К П. с. относятся: сооружения коммуникац. назначения (туннели; каналы к коллекторы… … Большой энциклопедический политехнический словарь

Сооружения, выполняющие определённые функции в производственном процессе либо предназначенные для восприятия нагрузок от технологического оборудования, сырья, коммуникаций и пр. В современном промышленном строительстве доля П. с. в общей… … Большая советская энциклопедия

- (a. underground construction; н. Tiefbau; ф construction souterraine, travaux souterrains; и. construccion subterranea) возведение подземных сооружений. Pазличают закрытые и открытые спец. способы П. c. Bыбор способа П. c. зависит от инж … Геологическая энциклопедия

- (a. special methods of construction; н. Sonderbauverfahren, Sonderverfahren fur Bauarbeiten; ф. procedes speciaux de construction, methodes speciales de construkction; и. metodos especiales de construccion) подземных сооружений способы… … Геологическая энциклопедия

- (a. self advancing support; н. Schreitausbau, ruckbarer Ausbau, schreitender Ausbau; ф. soutenement deplacable, soutenement ripable, soutenement grimpant; и. entibacion marchante, entibacion desplazable, fortificacion marchante)… … Геологическая энциклопедия

- (от др. греч. Υδωρ вода и изоляция) защита строительных конструкций, зданий и сооружений от проникновения воды (антифильтрационная гидроизоляция) или материала сооружений от вредного воздействия омывающей или фильтрующей воды или… … Википедия - Государственные элементные сметные нормы (ГЭСН) это сборники государственных элементных сметных нормативов на строительные и специальные строительные работы. Сметный норматив отдельных элементов прямых затрат, приходящихся на единицу объема… … Википедия

Территориальные единичные расценки (ТЕР) – это сметные нормативы, содержащие расценки на выполнение единичных строительных работ на территории субъектов Российской Федерации. Данные сметные нормативы регламентируют общественно необходимые,… … Википедия

Предисловие

Метод опускного колодца при строительстве водопроводных или канализационных сооружений используют при устройстве насосных станций, водозаборов, подземных опор и тому подобное.

Метод опускного колодца при строительстве водопроводных или канализационных сооружений используют при устройстве насосных станций, водозаборов, подземных опор и тому подобное. Технология возведения опускных колодцев заключается в том, что под ножевой частью будущих стен сооружения убирают грунт в направлении от центра к периметру стен. В итоге стены опускного колодца утрачивают опору с внутренней стороны, и под действием собственной тяжести сооружение опускается.

Опускной метод устройства колодца реализуют в следующей последовательности.

Выкапывают котлован глубиной 3-6 м, извлекая грунт лопатами или, если есть возможность, используют экскаватор (на большом неосвоенном участке) или мини-экскаватор (bobcat), если территория не позволяет развернуться тяжелой технике. Вынутый грунт складируют в стороне от места работ, чтобы он не оказывал давления на почву и не вызывал осыпания стенок котлована.

Планируют дно котлована, придавая ему горизонтальность.

Если при строительстве опускного колодца скважина оказались загрязненной химическими веществами, если вода перестала прибывать, если трубы, шахта или оголовок колодца пришли в негодность, домовладелец должен ликвидировать водозаборное сооружение, засыпать его глиной и уплотнить.

В заданном месте кладут опускную раму или нижний венец сруба (диаметр бревен одного или нескольких венцов должен быть примерно на 5 см больше остальных, причем уширение должно располагаться с внешней стороны, благодаря чему глиняный замок, нанесенный потом на венцы, не раскрошится и не вытрется грунтом во время движения сруба вниз) и контролируют ее строительным уровнем.

Следующий этап устройства опускного колодца — последовательная укладка рядовых венцов в соответствии с их номерами. Затем их уплотняют, припрессовывая деревянным молотком, и отвесом проверяют вертикальность всей конструкции. Действуя таким образом, доводят сруб до поверхности земли. Здесь надо заметить, что для периодической проверки вертикальности сруба и корректировки ее требуется достаточно много времени.

Чтобы оптимизировать работу, сруб опускают по направляющим. Для этого по углам с внешней стороны сруба устанавливают толстые доски и прибивают их к каждому венцу. Для еще большей надежности и жесткости конструкции посередине стенок сруба тоже можно прикрепить направляющие. Согласно технологии, сруб опускного колодца вплотную к направляющим обкладывают бревнами, забивают в образуемые ими углы колья диаметром 8-10 см и фиксируют их скобами. В результате получается контур, вдоль которого перемещаются направляющие. Все это в совокупности обеспечивает строго вертикальное движение сруба и экономит время.

По окончании работ направляющие из грунта не извлекают, хотя они создают неудобства при последующем ремонте сруба:

  • если требуется заменить сгнившие венцы, направляющие выпиливают;
  • уплотняют пазы между венцами жирной глиной, которую намазывают заподлицо с бревнами или брусьями и тщательно разравнивают;
  • фиксируют сруб изнутри толстыми досками, прибивая их по углам. Это необходимо для того, чтобы венцы при опускании не разорвались.

В последние годы на сменудеревянным венцам пришли бетонные кольца. Они удобны не только тем, что долговечнее древесины, легче в монтаже, но и тем, что никак не влияют на качество воды, не придают ей никакого привкуса. Но покупать их следует у крупных производителей.

Выбирают грунт из-под стенок сруба и подают его наверх. Если поначалу можно действовать вручную, то по мере углубления колодца необходимо применять другие способы для извлечения грунта. Для этого подготавливают прочные емкости (бочки, бадьи и т. и.), стальной трос или канат с крюками и хомутами, которые не дадут емкости сорваться, грузоподъемностью до 500 кг (диаметр первого составляет 15-20 мм, второго - 30-45 мм). Ежедневно перед началом работ и после обеда это оборудование проверяют, для чего наполняют камнями и, как минимум, 3 раза, опускают в шахту и поднимают. Если нет специальных подъемных механизмов, устанавливают треногу с блоком, через который перекидывают трос или канат, и вручную поднимают емкости с водой и грунтом на поверхность;

После того как ствол колодца закончен, на дне устраивают донный фильтр из песчано-гравийной смеси, насыпав ее слоем толщиной 20-25 см. Если вода поступает и через стены сруба, в нем проделывают отверстия. Оформляют оголовок колодца и прилегающую площадку.

Опускной способ возведения трубчатого колодца

В заключение необходимо сказать, что способом опускного колодца устраивают не только шахтный колодец с деревянным срубом, но и трубчатый колодец с железобетонными кольцами, диаметр которых подбирают так, чтобы внутри могли работать одновременно два человека. Обычно это кольца высотой 60-90 см и диаметром 100-150 см. Этот способ вполне практичный, менее трудоемкий, поскольку используются готовые кольца, а не изготавливается сруб, но применим только при близком залегании водоносных слоев (до 6 м). Бетонный колодец обойдется дороже деревянного, но он имеет целый ряд важных преимуществ, поскольку соответствует санитарным нормам; бывает герметичным и не пропускает внутрь верховодку; более легок в уходе, так как гладкие стенки без труда освобождаются от слизи и т. п.

Последовательность же действий практически не отличается от представленной ранее:

  • подкапывают грунт по периметру кольца, опускают его;
  • устанавливают очередное кольцо и т. д.;
  • фиксируют кольца между собой стальными скобами длиной 20 см, располагая их как с внешней, так и с внутренней стороны и загибая концы. Если в кольцах отверстия под скобы отсутствуют, то их просверливают;
  • заделывают стыки между кольцами цементным раствором;
  • если вода поступает не только снизу, но и сбоку, то в боковых стенках кольца проделывают отверстия;
  • в последнюю очередь обустраивают оголовок и прилегающую площадку.

Представляют собой замкнутую в плане и открытую сверху и снизу полую конструкцию, бетонируемую или собираемую из сборных элементов на поверхности грунта и погружаемую под действием собственного веса или дополнительной пригрузки по мере разработки грунта внутри нее (рис.13.1 и 13.2.).

Рис.13.1 Последовательность устройства опускного колодца:

а – изготовление первого яруса опускного колодца на поверхности грунта; б – погружение первого яруса опускного колодца в грунт; в – наращивание оболочки колодца; г – погружение колодца до проектной отметки; д – заполнение бетоном полости опускного колодца в случае использования его как фундамента глубокого заложения



Рис.13.2. Формы сечений опускных колодцев в плане:

а – круглая; б – квадратная; в – прямоугольная; г – прямоугольная с поперечными перегородками; д – с закругленными торцевыми стенками

· Форма колодца в плане определяется конфигурацией проектируемого сооружения См. рис.13.2.

Наиболее рациональной является круглая форма, т.к. стенка круглого колодца работает только на сжатие, и при заданной площади основания обладает наименьшим наружным периметром, что уменьшает силы трения по их боковой поверхности, возникающие при погружении. Плоские же стенки опускных колодцев в основном будут работать на изгиб (что далеко не выгодно), но с другой стороны прямоугольная и квадратная форма позволяет более рационально использовать площадь внутреннего помещения.

· В любом случае очертание колодца должно быть в плане симметричным, т.к. всякая асимметрия осложняет его погружение (прекосы, отклонения).

· Конструкционные материалы для опускных колодцев:

Каменная или кирпичная кладка;

Ж/б- наиболее распространен:

1.Монолитные (только когда форма колодца в плане имеет сложное очертание, нет возможности изготовления сборных элементов, при проходке скальных грунтов и грунтов с большим числом валунов).

2.Сборные (наибольшее предпочтение)

· Погружению колодца в основание сопротивляются силы трения стен колодца о грунт. Для уменьшения трения колодцам придают коническую или цилиндрически уступчатую форму, с использованием тиксотропной суспензии. Оболочка опускного колодца из монолитного ж/б состоит из двух основных частей: 1 – ножевой; 2 – собственно оболочки. См. рис. 13.3.



Рис.13.3. Форма вертикальных сечений монолитных опускных колодцев:

а – цилиндрическая; б – коническая; в – цилиндрическая ступенчатая; 1 – ножевая часть опускного колодца; 2 – оболочка опускного колодца; 3 – арматура ножа колодца

· Ножевая часть шире стены оболочки на 100…150мм со стороны грунта.

· Толщина стен монолитных колодцев определяется из условия создания веса, необходимого для преодоления сил трения.

· Бетон должен быть прочным, плотным (вес) и иметь высокую водонепроницаемость – В35.

· Монолитные ж/б колодцы изготавливают непосредственно над местом их погружения на специально изготовленной выровненной площадке. При >10м его бетонирование ведется отдельными ярусами, последовательно. К опусканию преступают только после набором бетоном 100% прочности, что непроизводительно (потеря времени).

· К недостаткам монолитных ж/б опускных колодцев также следует отнести:

Большой расход материалов, не оправданный требованиями прочности;

Значительная трудоемкость, за счет их изготовления полностью на строительной площадке;

· Преимущества монолитных колодцев:

Простота изготовления;

Возможность придания им любой формы;

Отсутствие (как правило) опасности всплытия

· Из сборных опускных колодцев наибольшее распространение получили:

Колодцы из пустотелых прямоугольных элементов (рис.13.4)



Рис.13.4. Сборный опускной колодец из пустотелых прямоугольных блоков:

1 – блоки; 2 – форшахта; 3 – монолитный железобетонный пояс; 4 – нож из монолитного железобетона

Из плоских вертикальных панелей (клепок) (рис.13.5)



Рис.13.5. Сборный опускной колодец из вертикальных панелей:

1 – панели; 2 – форшахта;

· Колодцы из пустотелых прямоугольных элементов выполняют с монолитной ножевой частью, на которой монтируется оболочка из сборных двухпустотных блоков (рис.13.4), без перевязки швов (один на другой). Блоки скрепляются между собой только в вертикальных швах. В результате образуются вертикальные пустоты в блоках на всю высоту колодца, заполняемые в последствии бетоном. Если колодец разбит по высоте, то в верхней части каждого яруса опускания устраивают монолитный пояс.


Рис.Схема расположения пустот в блоках опускного колодца

Наличие в блоках сквозных пустот позволяет регулировать вес колодца при его опускании или для выравнивания при перекосах (заполнение пустот тяжелыми материалами, что также при необходимости удерживает колодец от всплытия).

· Каждая из плоских вертикальных панелей (клепок) представляет собой элемент стены колодца на всю его высоту (рис.13.5). Между собой панели соединяются с помощью петлевых стыков или накладками на сварке.

· При необходимости возведения такого опускного колодца большей высоты стены его наращивают такими же панелями, но уже без ножевой части. При этом в горизонтальном стыке панели верхнего и нижнего яруса соединяют сваркой закладных деталей.

· При высоком уровне УГВ в слабых грунтах и откачке воды изнутри колодца вода проникает внутрь колодца, вызывая механическую суффозию (вымывание и перемещение частиц грунта). Вокруг колодца образуется грунт с нарушенной структурой, поверхность грунта может опускаться, вызывая деформации соседних зданий. Альтернатива данному способу - погружение колодца без откачки воды.


Рис. Схема движения воды (суффозии) при выемке грунта из опускного колодца

· Открытый водоотлив применяют в устойчивых грунтах с относительно малым Кф .



Рис.13.6. Разработка грунта в опускном колодце:

а – насухо с помощью экскаватора; б – под водой с помощью грейфера; 1 – колодец; 2 – башенный кран; 3 – экскаватор; 4 – кран-экскаватор; 5 – грейфер

Эти две схемы погружения колодцев называются:

1.Насухо (при отсутствии подземных вод или с применением открытого водоотлива или водопонижения).

2. С разработкой грунта под водой.

· Выбор способа разработки грунта зависит от размеров колодца, геологических условий строительной площадки и местных условий строительства. Так, например, грейферы применяют для разработки рыхлых песков, легких супесей, галечников и т.д.

· Глубина разработки грунта на одну «Посадку» колодца принимается равной 1,5…2,0м при использовании экскаваторов и бульдозеров и не более 0,5м при применении средств гидромеханизации.

· Разработка грунта под водой осуществляется преимущественно экскаваторами, оборудованными грейфером (рис.13.6 б). В случае очень слабых грунтов (плывуны), чтобы предотвратить их наплыв из-под ножа, рекомендуется поднимать уровень воды в колодце на 1…3м выше УГВ, накачивая в него воду.

· Недостатком «под водой» является:

Сложность контроля процесса откопки;

Трудность удаления крупных включений.



Поделиться