Степень окисления 2 могут. Валентность и степень окисления - подготовка к егэ по химии

Как определить степень окисления? Таблица Менделеева позволяет записывать данную количественную величину для любого химического элемента.

Определение

Для начала попробуем понять, что представляет собой данный термин. Степень окисления по таблице Менделеева представляет собой количество электронов, которые приняты либо отданы элементом в процессе химического взаимодействия. Она может принимать отрицательное и положительное значение.

Связь с таблицей

Как определяется степень окисления? Таблица Менделеева состоит из восьми групп, расположенных вертикально. В каждой из них есть две подгруппы: главная и побочная. Для того чтобы установить показатели для элементов, необходимо использовать определенные правила.

Инструкция

Как рассчитать степени окисления элементов? Таблица позволяет в полной мере справиться с подобной проблемой. Щелочные металлы, которые располагаются в первой группе (главной подгруппе), степень окисления проявляют в соединениях, она соответствует +, равна их высшей валентности. У металлов второй группы (подгруппы А) +2 степень окисления.

Таблица позволяет определить данную величину не только у элементов, проявляющих металлические свойства, но и у неметаллов. Их максимальная величина будет соответствовать высшей валентности. Например, для серы она составит +6, для азота +5. Как вычисляется у них минимальная (низшая) цифра? Таблица отвечает и на этот вопрос. Необходимо вычесть номер группы из восьми. Например, у кислорода она составит -2, у азота -3.

Для простых веществ, которые не вступали в химическое взаимодействие с другими веществами, определяемый показатель считается равным нулю.

Попробуем выявить основные действия, касающиеся расстановки в бинарных соединениях. Как поставить в них степень окисления? Таблица Менделеева помогает решить проблему.

Для примера возьмем оксид кальция СаО. Для кальция, расположенного в главной подгруппе второй группы, величина будет являться постоянной, равной +2. У кислорода, имеющего неметаллические свойства, данный показатель будет являться отрицательной величиной, и он соответствует -2. Для того чтобы проверить правильность определения, суммируем полученные цифры. В итоге мы получим ноль, следовательно, вычисления верны.

Определим подобные показатели еще в одном бинарном соединении CuO. Так как медь располагается в побочной подгруппе (первой группе), следовательно, изучаемый показатель может проявлять разные значения. Поэтому для его определения необходимо сначала выявить показатель для кислорода.

У неметалла, располагающегося в конце бинарной формулы, степень окисления имеет отрицательное значение. Так как этот элемент располагается в шестой группе, при вычитании из восьми шести получаем, что степень окисления у кислорода соответствует -2. Так как в соединении отсутствуют индексы, следовательно, показатель степени окисления у меди будет положительным, равным +2.

Как еще используется химическая таблица? Степени окисления элементов в формулах, состоящих из трех элементов, также вычисляются по определенному алгоритму. Сначала расставляют эти показатели у первого и последнего элемента. Для первого этот показатель будет иметь положительное значение, соответствовать валентности. У крайнего элемента, в качестве которого выступает неметалл, данный показатель имеет отрицательное значение, он определяется в виде разности (от восьми отнимают номер группы). При вычислении степени окисления у центрального элемента используют математическое уравнение. При расчетах учитывают индексы, имеющиеся у каждого элемента. Сумма всех степеней окисления должна быть равна нулю.

Пример определения в серной кислоте

Формула данного соединения имеет вид H 2 SO 4 . У водорода степень окисления составит +1, у кислорода она равна -2. Для определения степени окисления у серы, составим математическое уравнение: + 1 * 2 + Х + 4 * (-2) = 0. Получаем, что степень окисления у серы соответствует +6.

Заключение

При использовании правил можно расставлять коэффициенты в окислительно-восстановительных реакциях. Данный вопрос рассматривается в курсе химии девятого класса школьной программы. Кроме того, информация о степенях окисления позволяет выполнять задания ОГЭ и ЕГЭ.

Темы кодификатора ЕГЭ: Электроотрицательность. Степень окисления и валентность химических элементов.

Когда атомы взаимодействуют и образуют , электроны между ними в большинстве случаев распределяются неравномерно, поскольку свойства атомов различаются. Более электроотрицательный атом сильнее притягивает к себе электронную плотность. Атом, который притянул к себе электронную плотность, приобретает частичный отрицательный заряд δ — , его «партнер» — частичный положительный заряд δ+ . Если разность электроотрицательностей атомов, образующих связь, не превышает 1,7, мы называем связь ковалентной полярной . Если разность электроотрицательностей, образующих химическую связь, превышает 1,7, то такую связь мы называем ионной .

Степень окисления – это вспомогательный условный заряд атома элемента в соединении, вычисленный из предположения, что все соединения состоят из ионов (все полярные связи – ионные).

Что значит «условный заряд»? Мы просто-напросто договариваемся, что немного упростим ситуацию: будем считать любые полярные связи полностью ионными, и будем считать, что электрон полностью уходит или приходит от одного атома к другому, даже если на самом деле это не так. А уходит условно электрон от менее электроотрицательного атома к более электроотрицательному.

Например , в связи H-Cl мы считаем, что водород условно «отдал» электрон, и его заряд стал +1, а хлор «принял» электрон, и его заряд стал -1. На самом деле таких полных зарядов на этих атомах нет.

Наверняка, у вас возник вопрос — зачем же придумывать то, чего нет? Это не коварный замысел химиков, все просто: такая модель очень удобна. Представления о степени окисления элементов полезны при составлении классификации химических веществ, описании их свойств, составлении формул соединений и номенклатуры. Особенно часто степени окисления используются при работе с окислительно-восстановительными реакциями .

Степени окисления бывают высшие , низшие и промежуточные .

Высшая степень окисления равна номеру группы со знаком «плюс».

Низшая определяется, как номер группы минус 8.

И промежуточная степень окисления — это почти любое целое число в интервале от низшей степени окисления до высшей.

Например , для азота характерны: высшая степень окисления +5, низшая 5 — 8 = -3, а промежуточные степени окисления от -3 до +5. Например, в гидразине N 2 H 4 степень окисления азота промежуточная, -2.

Чаще всего степень окисления атомов в сложных веществах обозначается сначала знаком, потом цифрой, например +1, +2, -2 и т.д. Когда речь идет о заряде иона (предположим, что ион реально существует в соединении), то сначала указывают цифру, потом знак. Например : Ca 2+ , CO 3 2- .

Для нахождения степеней окисления используют следующие правила :

  1. Степень окисления атомов в простых веществах равна нулю;
  2. В нейтральных молекулах алгебраическая сумма степеней окисления равна нулю, для ионов эта сумма равна заряду иона;
  3. Степень окисления щелочных металлов (элементы I группы главной подгруппы) в соединениях равна +1, степень окисления щелочноземельных металлов (элементы II группы главной подгруппы) в соединениях равна +2; степень окисления алюминия в соединениях равна +3;
  4. Степень окисления водорода в соединениях с металлами ( — NaH, CaH 2 и др.) равна -1 ; в соединениях с неметаллами () +1 ;
  5. Степень окисления кислорода равна -2 . Исключение составляют пероксиды – соединения, содержащие группу –О-О-, где степень окисления кислорода равна -1 , и некоторые другие соединения (супероксиды, озониды, фториды кислорода OF 2 и др.);
  6. Степень окисления фтора во всех сложных веществах равна -1 .

Выше перечислены ситуации, когда степень окисления мы считаем постоянной . У всех остальных химических элементов степень окисления переменная , и зависит от порядка и типа атомов в соединении.

Примеры :

Задание : определите степени окисления элементов в молекуле дихромата калия: K 2 Cr 2 O 7 .

Решение: степень окисления калия равна +1, степень окисления хрома обозначим, как х , степень окисления кислорода -2. Сумма всех степеней окисления всех атомов в молекуле равна 0. Получаем уравнение: +1*2+2*х-2*7=0. Решаем его, получаем степень окисления хрома +6.

В бинарных соединениях более электроотрицательный элемент характеризуется отрицательной степенью окисления, менее электроотрицательный – положительной.

Обратите внимание, что понятие степени окисления – очень условно! Степень окисления не показывает реальный заряд атома и не имеет реального физического смысла . Это упрощенная модель, которая эффективно работает, когда нам необходимо, например, уравнять коэффициенты в уравнении химической реакции, или для алгоритмизации классификации веществ.

Степень окисления – это не валентность ! Степень окисления и валентность во многих случаях не совпадают. Например, валентность водорода в простом веществе Н 2 равна I, а степень окисления, согласно правилу 1, равна 0.

Это базовые правила, которые помогут Вам определить степень окисления атомов в соединениях в большинстве случаев.

В некоторых ситуациях вы можете столкнуться с трудностями при определении степени окисления атома. Рассмотрим некоторые из этих ситуаций, и разберем способы их разрешения:

  1. В двойных (солеобразных) оксидах степень у атома, как правило, две степени окисления. Например, в железной окалине Fe 3 O 4 у железа две степени окисления: +2 и +3. Какую из них указывать? Обе. Для упрощения можно представить это соединение, как соль: Fe(FeO 2) 2 . При этом кислотный остаток образует атом со степенью окисления +3. Либо двойной оксид можно представить так: FeO*Fe 2 O 3 .
  2. В пероксосоединениях степень окисления атомов кислорода, соединенных ковалентными неполярными связями, как правило, изменяется. Например, в пероксиде водорода Н 2 О 2 , и пероксидах щелочных металлов степень окисления кислорода -1, т.к. одна из связей – ковалентная неполярная (Н-О-О-Н). Другой пример – пероксомоносерная кислота (кислота Каро) H 2 SO 5 (см. рис.) содержит в составе два атома кислорода со степенью окисления -1, остальные атомы со степенью окисления -2, поэтому более понятной будет такая запись: H 2 SO 3 (O 2). Известны также пероксосоединения хрома – например, пероксид хрома (VI) CrO(O 2) 2 или CrO 5 , и многие другие.
  3. Еще один пример соединений с неоднозначной степенью окисления – супероксиды (NaO 2) и солеобразные озониды KO 3 . В этом случае уместнее говорить о молекулярном ионе O 2 с зарядом -1 и и O 3 с зарядом -1. Строение таких частиц описывается некоторыми моделями, которые в российской учебной программе проходят на первых курсах химических ВУЗов: МО ЛКАО, метод наложения валентных схем и др.
  4. В органических соединениях понятие степени окисления не очень удобно использовать, т.к. между атомами углерода существует большое число ковалентных неполярных связей. Тем не менее, если нарисовать структурную формулу молекулы, то степень окисления каждого атома также можно определить по типу и количеству атомов, с которыми данный атом непосредственно связан. Например, у первичных атомов углерода в углеводородах степень окисления равна -3, у вторичных -2, у третичных атомов -1, у четвертичных — 0.

Потренируемся определять степень окисления атомов в органических соединениях. Для этого необходимо нарисовать полную структурную формулу атома, и выделить атом углерода с его ближайшим окружением — атомами, с которыми он непосредственно соединен.

  • Для упрощения расчетов можно использовать таблицу растворимости – там указаны заряды наиболее распространенных ионов. На большинстве российских экзаменов по химии (ЕГЭ, ГИА, ДВИ) использование таблицы растворимости разрешено. Это готовая шпаргалка, которая во многих случаях позволяет значительно сэкономить время.
  • При расчете степени окисления элементов в сложных веществах сначала указываем степени окисления элементов, которые мы точно знаем (элементы с постоянной степенью окисления), а степень окисления элементов с переменной степенью окисления обозначаем, как х. Сумма всех зарядов всех частиц равна нулю в молекуле или равна заряду иона в ионе. Из этих данных легко составить и решить уравнение.

Инструкция

В результате образуется комплексное соединение – тетрахлораурат водорода. Комплексообразователем в нем является ион золота, лигандами – ионы хлора, внешней сферой – ион водорода. Как же определить степени окисления элементов в этом комплексном соединении ?

Прежде всего определите, какой из элементов, входящих в состав молекулы, самый электроотрицательный, то есть кто будет перетягивать к себе общую электронную плотность. Это, хлор, поскольку он в верхней правой части таблицы Менделеева, и по уступает только фтору и кислороду. Следовательно, его степень окисления будет со знаком «минус». А какова величина степени окисления хлора?

Хлор, как и все другие галогены, расположен в 7-й группе таблицы Менделеева, на его внешнем электронном уровне находится 7 электронов. Перетянув на этот уровень еще один электрон, он перейдет в устойчивое положение. Таким образом, его степень окисления будет равна -1. А поскольку в этом комплексном соединении четыре иона хлора, то суммарный заряд будет равняться -4.

Но сумма величин степеней окисления элементов, входящих в состав молекулы, должна быть равной нулю, ведь любая молекула электрически нейтральна. Таким образом, -4 должен быть уравновешен положительным зарядом +4, за счет водорода и золота.

Вам понадобится

  • Школьный учебник по химии 8-9 класс любого автора, таблица Менделеева, таблица электроотрицательности элементов (печатаются в школьных учебниках по химии).

Инструкция

Для начала необходимо обозначить, что степень - это понятие , принимающее связи за , то есть не углубляющиеся в строение. Если элемент находится в свободном состоянии, то это самый простой случай - образуется простое вещество, а значит степень окисления его равна нулю. Так например, водород, кислород, азот, фтор и т.д.

В сложных веществах все обстоит иначе: электроны между атомами распределены неравномерно, и именно степень окисления помогает определить количество отданных или принятых электронов. Степень окисления может положительной и отрицательной. При плюсе электроны отдаются, при минусе принимаются. Некоторые элементы свою степень окисления сохраняют в различных соединениях, но многие этой особенностью не отличаются. Нужно помнить немаловажное правило - сумма степеней окисления всегда равна нулю. Простейший пример, газ СО: зная, что степень окисления кислорода в преобладающем большинстве случаев равна -2 и используя вышеобозначенное правило, можно вычислить степень окисления для С. В сумме с -2 ноль дает только +2, а значит степень окисления углерода +2. Усложним задачу и возьмем для вычислений газ СО2: степень окисления кислорода по-прежнему остается -2, но молекул его в данном случае две. Следовательно, (-2) * 2 = (-4). Число, в сумме с -4 дающее ноль, +4, то есть в этом газе имеет степень окисления +4. Пример посложнее: Н2SO4 - у водорода степень окисления +1, у кислорода -2. Во взятом соединении 2 водорода и 4 кислорода, т.е. будут, соответственно, +2 и -8. Для того чтобы в сумме получить ноль, нужно добавить 6 плюсов. Значит, степень окисления серы +6.

Когда в соединении сложно определить, где плюс, где минус, необходима электроотрицательности (ее несложно найти в учебнике по общей ). Металлы часто имеют положительную степень окисления , а неметаллы отрицательную. Но например, PI3 - оба элемента неметаллы. В таблице указано, что электроотрицательность йода равна 2,6, а 2,2. При сравнении выясняется, что 2,6 больше, чем 2,2, то есть электроны стягиваются в сторону йода (йод имеет отрицательную степень окисления ). Следуя приведенным несложным примерам, можно легко определить степень окисления любого элемента в соединениях.

Обратите внимание

Не нужно путать металлы и неметаллы, тогда степень окисления будет проще найти и не запутаться.

Степенью окисления называют условный заряд атома в молекуле. При этом предполагают, что все связи имеют ионный характер. Иначе говоря, окисления характеризует возможность элемента образовывать ионную связь.

Вам понадобится

  • - таблица Менделеева.

Инструкция

В соединении сумма степеней атомов равна заряду этого соединения. Значит, в простом веществе, например, Na или H2, степень окисления элемента равна нулю.

Степень окисления кислорода в соединениях обычно равна -2. Например, в воде H2O два атома водорода и один атом кислорода. Действительно, -2+1+1 = 0 - в левой части выражении стоит сумма степеней окисления всех входящих в соединение атомов. В СaO кальций имеет степень окисления +2, а - -2. Исключения из этого - соединения OF2 и H2O2.
У степень окисления всегда равна -1.

Обычно максимальная положительная степень окисления элемента совпадает с номером его группы в периодической таблицы элементов Менделеева. Максимальная степень окисления равна элемента минус восемь. Пример - хлор в седьмой группе. 7-8 = -1 - степень окисления . Исключение в этом правиле составляют фтор, кислород и железо - высшая степень окисления ниже номера их группы. У элементов подгруппы меди высшая степень окисления больше 1.

Источники:

  • Степень окисления элементов в 2018

Степень окисления элемента – это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что соединения состоят только из ионов. Они могут иметь положительные, отрицательные, нулевые значения. У металлов степени окисления всегда положительные, у неметаллов могут быть как положительные, так и отрицательные. Это зависит от того, с каким атомом соединен атом неметалла.

Инструкция

Обратите внимание

Степень окисления может иметь дробные значения, например в магнитном железняке Fe2O3 равна +8/3.

Источники:

  • "Пособие по химии", Г.П. Хомченко, 2005.

Степень окисления - часто встречающаяся в учебниках химии характеристика элементов. Существует большое количество задач, направленных на определение этой степени, и многие из них вызывают у школьников и студентов трудности. Но, следуя определенному алгоритму, эти трудности можно избежать.

Вам понадобится

Инструкция

Запомните одно общее правило: любого элемента в простом веществе равна нулю ( простых веществ: Na, Mg, Al, - т.е. вещества, состоящие из одного элемента). Для определения вещества вначале просто запишите его, не теряя индексов - цифр, стоящих в правой нижней части рядом с символом элемента. Примером будет серная - H2SO4.

Далее откройте таблицу Д.И. Менделеева и найдите степень самого левого элемента в вашем веществе - в случае данного примера. По существующему правилу его степень окисления будет всегда положительна, и записывается она со знаком «+», так как он занимает крайнее левое положение в записи формулы вещества. Чтобы определить числовое значение степени окисления, обратите внимание на расположение элемента относительно групп. Водород находится в первой группе, следовательно, его степень окисления +1, но так как в серной два атома водорода (это нам показывает индекс), то над его символом напишите +2.

После этого определите степень окисления самого правого элемента в записи - кислорода в данном случае. Его условный (или степень окисления) будет всегда отрицателен, так как он занимает правое положение в записи вещества. Это правило справедливо во всех случаях. Числовое значение правого элемента находится в результате вычитания из номера его группы числа 8. В данном случае степень окисления кислорода равна -2 (6-8=-2), учитывая индекс - -8.

Чтобы найти условный заряд атома третьего элемента, воспользуйтесь правилом - сумма степеней окисления всех элементов должна быть равна нулю. Значит, условный заряд атома кислорода в веществе будет равен +6: (+2)+(+6)+(-8)=0. После этого запишите +6 над символом серы.

Источники:

  • как степени окисления химических элементов

Фосфор – химический элемент, имеющий 15-й порядковый номер в Таблице Менделеева. Он расположен в ее V группе. Классический неметалл, открытый алхимиком Брандом в 1669-м году. Существует три основных модификации фосфора: красный (входящий в состав смеси для розжига спичек), белый и черный. При очень высоких давлениях (порядка 8,3*10^10Па) черный фосфор переходит в другое аллотропическое состояние («металлический фосфор») и начинает проводить ток. фосфора в различных веществах?

Инструкция

Вспомните, степень . Это величина, соответствующая заряду иона в молекуле, при условии, что электронные пары, осуществляющие связь, смещены в сторону более электроотрицательного элемента (расположенного в Таблице Менделеева правее и выше).

Надо также знать главное условие: сумма электрических зарядов всех ионов, входящих в состав молекулы, с учетом коэффициентов всегда должна равняться нулю.

Степень окисления далеко не всегда количественно совпадает с валентностью. Наилучший пример – углерод, который в органических всегда имеет , равную 4, а степень окисления может быть равной и -4, и 0, и +2, и +4.

Какова степень окисления в молекуле фосфина PH3, например? С учетом всего дать на этот вопрос очень легко. Поскольку водород – самый первый элемент в Таблице Менделеева, он по определению не может располагаться там «правее и выше», чем . Следовательно, именно фосфор притянет к себе электроны водорода.

Каждый атом водорода, лишившись электрона, превратится в положительно заряженный ион окисления +1. Следовательно, суммарный положительный заряд равен +3. Значит, с учетом правила, гласящего, что суммарный заряд молекулы равен нулю, степень окисления фосфора в молекуле фосфина равна -3.

Ну, а какова степень окисления фосфора в оксиде P2O5? Возьмите Таблицу Менделеева. Кислород расположен в VI группе, правее фосфора, и к тому же выше, следовательно, он однозначно более электроотрицателен. То есть степень окисления кислорода в этом соединении будет со знаком «минус», а фосфора – со знаком «плюс». Каковы же эти степени, чтобы молекула в целом была нейтральна? Легко можно увидеть, что наименьшее общее кратное для чисел 2 и 5 – это 10. Следовательно, степень окисления кислорода -2, а фосфора +5.

При изучении ионной и ковалентной полярной химической связи вы знакомились со сложными веществами, состоящими из двух химических элементов. Такие вещества называют би парными (от лат. би — «два») или двухэлементными.

Вспомним типичные бпнарные соединения, которые мы привели в качестве примера для рассмотрения механизмов образования ионной и ковалентноЙ полярной химической связи : NaHl — хлорид натрия и НСl — хлороводород. В первом случае связь ионная: атом натрия передал свой внешний электрон атому хлора и превратился при этом в ион с зарядом -1. а атом хлора принял электрон и превратился в ион с зарядом -1. Схематически процесс превращения атомов в ионы можно изобразить так:

В молекуле же НСl связь образуется за счет спаривания не-спаренных внешних электронов и образования общей электронной пары атомов водорода и хлора.

Правильнее представлять образование ковалентной связи в молекуле хлороводорода как перекрывание одноэлектронного s-облака атома водорода с одноэлектронным p-облаком атома хлора:

При химическом взаимодействии общая электронная пара смещена в сторону более электроотрицательного атома хлора:

Такие условные заряды называются степенью окисления . При определении этого понятия условно предполагают, что в ковалентных полярных соединениях связующие электроны полностью перешли к более электроотрицательному атому, а потому соединения состоят только из положительно и отрицательно заряженных ионов.

— это условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что все соединения (и ионные, и ковалентно-полярные) состоят только из ионов.

Степень окисления может иметь отрицательное, положительное или нулевое значения, которые обычно ставятся над символом элемента сверху, например:

Отрицательное значение степени окисления имеют те атомы, которые приняли электроны от других атомов пли к которым смещены общие электронные пары, то есть атомы более электроотрицательных элементов. Фтор всегда имеет степень окисления -1 во всех соединениях. Кислород , второй после фтора по значению элекгроотрицательности элемент, почти всегда имеет степень окисления -2, кроме соединений со фтором, например:

Положительное значение степени окисления имеют те атомы, которые отдают свои электроны другим атомам или от которых оттянуты общие электронные пары, то есть атомы менее электроотрицательных элементов. Металлы всегда имеют положительную степень окисления. У металлов главных подгрупп:

I группы во всех соединениях степень окисления равна +1,
II группы равна +2. III группы — +3, например:

В соединениях суммарная степень окисления всегда равна нулю. Зная это и степень окисления одного из элементов, всегда можно найти степень окисления другого элемента по формуле бинарного соединения. Например, найдем степень окисления хлора в соединении Сl2О2. Обозначим степень окисления -2
кислорода: Сl2О2. Следовательно, семь атомов кислорода будут иметь общий отрицательный заряд (-2) 7 =14. Тогда общий заряд двух атомов хлора будет равен +14, а одного атома хлора:
(+14):2 = +7.

Аналогично, зная степени окисления элементов, можно составить формулу соединения, например карбида алюминия (соединения алюминия и углерода). Запишем знаки алюминия н углерода рядом АlС, причем сначала знак алюминия, так как это металл. Определим по таблице элементов Менделеева число внешних электронов: у Аl — 3 электрона, у С — 4. Атом алюминия отдаст свои 3 внешних электрона углероду и получит при этом степень окисления +3, равную заряду иона. Атом углерода, наоборот, примет недостающие до "заветной восьмерки" 4 электрона и получит при этом степень окисления -4.

Запишем эти значения в формулу: АlС, и найдем наименьшее общее кратное для них, оно равно 12. Затем рассчитаем индексы:

Знать степени окисления элементов необходимо и для того, чтобы уметь правильно называть химическое соединение.

Названия бинарных соединений состоят из двух слов — названий образующих их химических элементов. Первое слово обозначает электроотрицательную часть соединения — неметалл, его латинское название с суффиксом -ид стоит всегда в именительном падеже. Второе слово обозначает электроположительную часть — металл или менее электроотрицательный элемент, его название всегда стоит в родительном падеже. Если же электроположительный элемент проявляет разные степени окисления, то это отражают в названии, обозначив степень окисления римской цифрой, которая ставится в конце.

Чтобы химики разных стран понимали друг друга, потребовалось создание единой терминологии и номенклатуры веществ. Принципы химической номенклатуры были впервые разработаны французскими химиками А. Лавуазье, А.Фурктуа, Л.Гитоном и К.Бертолле в 1785г. В настоящее время Международный союз теоретической и прикладной химии (ИЮПАК) координирует деятельность ученых рядных стран и издает рекомендации по номенклятурс веществ и терминологии, используемой к химии.

В химии термины «окисление» и «восстановление» означает реакции, при которых атом или группа атомов теряют или, соответственно, приобретают электроны. Степень окисления - это приписываемая одному либо нескольким атомам численная величина, характеризующая количество перераспределяемых электронов и показывающая, каким образом эти электроны распределяются между атомами при реакции. Определение этой величины может быть как простой, так и довольно сложной процедурой, в зависимости от атомов и состоящих из них молекул. Более того, атомы некоторых элементов могут обладать несколькими степенями окисления. К счастью, для определения степени окисления существуют несложные однозначные правила, для уверенного пользования которыми достаточно знания основ химии и алгебры.

Шаги

Часть 1

Определение степени окисления по законам химии

    Определите, является ли рассматриваемое вещество элементарным. Степень окисления атомов вне химического соединения равна нулю. Это правило справедливо как для веществ, образованных из отдельных свободных атомов, так и для таких, которые состоят из двух, либо многоатомных молекул одного элемента.

    • Например, Al (s) и Cl 2 имеют степень окисления 0, поскольку оба находятся в химически несвязанном элементарном состоянии.
    • Обратите внимание, что аллотропная форма серы S 8 , или октасера, несмотря на свое нетипичное строение, также характеризуется нулевой степенью окисления.
  1. Определите, состоит ли рассматриваемое вещество из ионов. Степень окисления ионов равняется их заряду. Это справедливо как для свободных ионов, так и для тех, которые входят в состав химических соединений.

    • Например, степень окисления иона Cl - равняется -1.
    • Степень окисления иона Cl в составе химического соединения NaCl также равна -1. Поскольку ион Na, по определению, имеет заряд +1, мы заключаем, что заряд иона Cl -1, и таким образом степень его окисления равна -1.
  2. Учтите, что ионы металлов могут иметь несколько степеней окисления. Атомы многих металлических элементов могут ионизироваться на разные величины. Например, заряд ионов такого металла как железо (Fe) равняется +2, либо +3. Заряд ионов металла (и их степень окисления) можно определить по зарядам ионов других элементов, с которыми данный металл входит в состав химического соединения; в тексте этот заряд обозначается римскими цифрами: так, железо (III) имеет степень окисления +3.

    • В качестве примера рассмотрим соединение, содержащее ион алюминия. Общий заряд соединения AlCl 3 равен нулю. Поскольку нам известно, что ионы Cl - имеют заряд -1, и в соединении содержится 3 таких иона, для общей нейтральности рассматриваемого вещества ион Al должен иметь заряд +3. Таким образом, в данном случае степень окисления алюминия равна +3.
  3. Степень окисления кислорода равна -2 (за некоторыми исключениями). Почти во всех случаях атомы кислорода имеют степень окисления -2. Есть несколько исключений из этого правила:

    • Если кислород находится в элементарном состоянии (O 2), его степень окисления равна 0, как и в случае других элементарных веществ.
    • Если кислород входит в состав перекиси , его степень окисления равна -1. Перекиси - это группа соединений, содержащих простую кислород-кислородную связь (то есть анион перекиси O 2 -2). К примеру, в составе молекулы H 2 O 2 (перекись водорода) кислород имеет заряд и степень окисления -1.
    • В соединении с фтором кислород обладает степенью окисления +2, читайте правило для фтора ниже.
  4. Водород характеризуется степенью окисления +1, за некоторыми исключениями. Как и для кислорода, здесь также существуют исключения. Как правило, степень окисления водорода равна +1 (если он не находится в элементарном состоянии H 2). Однако в соединениях, называемых гидридами, степень окисления водорода составляет -1.

    • Например, в H 2 O степень окисления водорода равна +1, поскольку атом кислорода имеет заряд -2, и для общей нейтральности необходимы два заряда +1. Тем не менее, в составе гидрида натрия степень окисления водорода уже -1, так как ион Na несет заряд +1, и для общей электронейтральности заряд атома водорода (а тем самым и его степень окисления) должен равняться -1.
  5. Фтор всегда имеет степень окисления -1. Как уже было отмечено, степень окисления некоторых элементов (ионы металлов, атомы кислорода в перекисях и так далее) может меняться в зависимости от ряда факторов. Степень окисления фтора, однако, неизменно составляет -1. Это объясняется тем, что данный элемент имеет наибольшую электроотрицательность - иначе говоря, атомы фтора наименее охотно расстаются с собственными электронами и наиболее активно притягивают чужие электроны. Таким образом, их заряд остается неизменным.

  6. Сумма степеней окисления в соединении равна его заряду. Степени окисления всех атомов, входящих в химическое соединение, в сумме должны давать заряд этого соединения. Например, если соединение нейтрально, сумма степеней окисления всех его атомов должна равняться нулю; если соединение является многоатомным ионом с зарядом -1, сумма степеней окисления равна -1, и так далее.

    • Это хороший метод проверки - если сумма степеней окисления не равна общему заряду соединения, значит вы где-то ошиблись.

    Часть 2

    Определение степени окисления без использования законов химии
    1. Найдите атомы, не имеющие строгих правил относительно степени окисления. По отношению к некоторым элементам нет твердо установленных правил нахождения степени окисления. Если атом не подпадает ни под одно правило из перечисленных выше, и вы не знаете его заряда (например, атом входит в состав комплекса, и его заряд не указан), вы можете установить степень окисления такого атома методом исключения. Вначале определите заряд всех остальных атомов соединения, а затем из известного общего заряда соединения вычислите степень окисления данного атома.

      • Например, в соединении Na 2 SO 4 неизвестен заряд атома серы (S) - мы лишь знаем, что он не нулевой, поскольку сера находится не в элементарном состоянии. Это соединение служит хорошим примером для иллюстрации алгебраического метода определения степени окисления.
    2. Найдите степени окисления остальных элементов, входящих в соединение. С помощью описанных выше правил определите степени окисления остальных атомов соединения. Не забывайте об исключениях из правил в случае атомов O, H и так далее.

      • Для Na 2 SO 4 , пользуясь нашими правилами, мы находим, что заряд (а значит и степень окисления) иона Na равен +1, а для каждого из атомов кислорода он составляет -2.
    3. Найдите неизвестную степень окисления из заряда соединения. Теперь у вас есть все данные для простого расчета искомой степени окисления. Запишите уравнение, в левой части которого будет сумма числа, полученного на предыдущем шаге вычислений, и неизвестной степени окисления, а в правой - общий заряд соединения. Иными словами, (Сумма известных степеней окисления) + (искомая степень окисления) = (заряд соединения).

      • В нашем случае Na 2 SO 4 решение выглядит следующим образом:
        • (Сумма известных степеней окисления) + (искомая степень окисления) = (заряд соединения)
        • -6 + S = 0
        • S = 0 + 6
        • S = 6. В Na 2 SO 4 сера имеет степень окисления 6 .
    • В соединениях сумма всех степеней окисления должна равняться заряду. Например, если соединение представляет собой двухатомный ион, сумма степеней окисления атомов должна быть равна общему ионному заряду.
    • Очень полезно уметь пользоваться периодической таблицей Менделеева и знать, где в ней располагаются металлические и неметаллические элементы.
    • Степень окисления атомов в элементарном виде всегда равна нулю. Степень окисления единичного иона равна его заряду. Элементы группы 1A таблицы Менделеева, такие как водород, литий, натрий, в элементарном виде имеют степень окисления +1; степень окисления металлов группы 2A, таких как магний и кальций, в элементарном виде равна +2. Кислород и водород, в зависимости от вида химической связи, могут иметь 2 различных значения степени окисления.


Поделиться