Признаки пересекающихся прямых в пространстве. Взаимное расположение двух прямых в пространстве

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ Большой Энциклопедический словарь

    скрещивающиеся прямые - прямые в пространстве, не лежащие в одной плоскости. * * * СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ, прямые в пространстве, не лежащие в одной плоскости … Энциклопедический словарь

    Скрещивающиеся прямые - прямые в пространстве, не лежащие в одной плоскости. Через С. п. можно провести параллельные плоскости, расстояние между которыми называется расстоянием между С. п. Оно равно кратчайшему расстоянию между точками С. п … Большая советская энциклопедия

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ - прямые в пространстве, не лежащие в одной плоскости. Углом между С. п. наз. любой из углов между двумя параллельными им прямыми, проходящими через произвольную точку пространства. Если а и b направляющие векторы С. п., то косинус угла между С. п … Математическая энциклопедия

    СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ - прямые в пространстве, не лежащие в одной плоскости … Естествознание. Энциклопедический словарь

    Параллельные прямые - Содержание 1 В Евклидовой геометрии 1.1 Свойства 2 В геометрии Лобачевского … Википедия

    Ультрапаралельные прямые - Содержание 1 В евклидовой геометрии 1.1 Свойства 2 В геометрии Лобачевского 3 См. также … Википедия

    РИМАНА ГЕОМЕТРИЯ - э л л и п т и ч е с к а я г е о м е т р и я, одна из неевклидовых геометрий, т. е. геометрич, теория, основанная на аксиомах, требования к рых отличны от требований аксиом евклидовой геометрии. В отличие от евклидовой геометрии в Р. г.… … Математическая энциклопедия

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Вам уже известны два случая взаимного расположения прямых в пространстве:

1.пересекающиеся прямые;

2.параллельные прямые.

Вспомним их определения.

Определение. Прямые в пространстве называются пересекающимися, если они лежат в одной плоскости и имеют одну общую точку

Определение. Прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.

Общим для этих определений является то, что прямые лежат в одной плоскости.

В пространстве так бывает не всегда. Мы можем иметь дело с несколькими плоскостями, и не всякие две прямые будут лежать в одной плоскости.

Например, ребра куба ABCDA1B1C1D1

AB и A1D1 лежат в разных плоскостях.

Определение. Две прямые называются скрещивающимися, если не существует такой плоскости, которая б проходила через эти прямые. Из определения понятно, что данные прямые не пересекаются и не параллельны.

Докажем теорему, которая выражает признак скрещивающихся прямых.

Теорема (признак скрещивающихся прямых).

Если одна из прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке не принадлежащей этой прямой, то эти прямые скрещивающиеся.

Прямая AB лежит в плоскости α. Прямая CD пересекает плоскость α в точке С, не принадлежащей прямой АВ.

Доказать, что прямые AB и DC - скрещиваются.

Доказательство

Доказательство будем вести методом от противного.

Допустим, АВ и CD лежат в одной плоскости, обозначим ее β.

Тогда плоскость β проходит через прямую AB и точку C.

По следствию из аксиом, через прямую AB и не лежащую на ней точку C можно провести плоскость, и притом только одну.

Но у нас уже есть такая плоскость - плоскость α.

Следовательно, плоскости β и α совпадают.

Но это невозможно, т.к. прямая CD пересекает α, а не лежит в ней.

Мы пришли к противоречию, следовательно, наше предположение неверно. AB и CD лежат в

разных плоскостях и являются скрещивающимися.

Теорема доказана.

Итак, возможны три способа взаимного расположения прямых в пространстве:

А) Прямые пересекаются, т.е имеют только одну общую точку.

Б) Прямые параллельны, т.е. лежат в одной плоскости и не имеют общих точек.

В) Прямые скрещиваются, т.е. не лежат в одной плоскости.

Рассмотрим еще одну теорему о скрещивающихся прямых

Теорема. Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

АВ и CD - скрещивающиеся прямые

Доказать, что существует плоскость α такая, что прямая AB лежит в плоскости α, а прямая CD параллельна плоскости α.

Доказательство

Докажем существование такой плоскости.

1) Через точку A проведем прямую AE параллельно CD.

2) Так как прямые AE и АВ пересекаются, то через них можно провести плоскость. Обозначим ее через α.

3) Так как прямая CD параллельна AE, а AE лежит в плоскости α, то прямая CD ∥ плоскости α (по теореме о перпендикулярности прямой и плоскости).

Плоскость α - искомая плоскость.

Докажем, что плоскость α - единственная, удовлетворяющая условию.

Любая другая плоскость, проходящая через прямую АВ, будет пересекать AE, а значит и параллельную ей прямую CD. Т.е., любая другая плоскость, проходящая через AB пересекается с прямой CD, поэтому не является ей параллельной.

Следовательно, плоскость α - единственная. Теорема доказана.

прямые l1 и l2 называются скрещивающимися, если они не лежат в одной плоскости. Пусть а и b - направляющие векторы этих прямых, а точки M1 и M2 принадлежат соответственно прямым и l1 и l2

Тогда векторы а, b, M1M2> не компланарны, и поэтому их смешанное произведение не равно нулю, т. е. (а, b, M1M2>) =/= 0.Верно и обратное утверждение:если (а, b, M1M2>) =/= 0, то векторы а, b, M1M2> не компланарны, и, следовательно, прямые l1 и l2 не лежат в одной плоскости, т. е. скрещиваются.Таким образом, две прямые скрещиваются тогда и только тогда, когда выполнено условие(а, b, M1M2>) =/= 0, где а и b - направляющие векторы прямых, а M1 и M2 - точки, принадлежащие соответственно данным прямым. Условие(а, b, M1M2>) = 0 является необходимым и достаточным условием того, что прямые лежат в одной плоскости. Если прямые заданы своими каноническими уравнениями

то а = (а1; а2; а3), b = (b1; b2;b3), М1 (x1; у1; z1), М2(х2; у2; z2) и условие (2) записывается следующим образом:

Расстояние между скрещивающимися прямыми

это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.

26.Определение эллипса, каноническое уравнение. Вывод канонического уравнения. Свойства.

Эллипсом называется геометрическое место точек плоскости, для которых сумма расстояний до двух фокусированных точек F1 и F2 этой плоскости, называемых фокусами есть величина постоянная.При этом не исключается совпадение фокусов эллипсиса.Если вокусы совпадают то эллипсис представляет собой окружность.Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):

Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат.

Если же в правой части стоит единица со знаком минус, то получившееся уравнение:

описывает мнимый эллипс. Изобразить такой эллипс в действительной плоскости невозможно.Обозначим фокусы через F1 и F2,а расстояние между ними через 2с, а сумму расстояний от произ­вольной точки эллипса до фокусов - через 2а

Для вывода уравнения эллипса выберем систему координат Оху так, чтобы фокусы F1 и F2 лежали на оси Ох, а начало координат совпадало с серединой отрезка F1F2. Тогда фокусы будут иметь следующие координаты:иПусть М(х;у) - произвольная точка эллипса. Тогда, согласно опре­делению эллипса, т. е.

Это, по сути, и есть уравнение эллипса.

27.Определение гиперболы, каноническое уравнение. Вывод канонического уравнения. Свойства

Гиперболой называется геометрическое место точек плоскости, для которой абсолютная величина разности расстояния до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.Пусть M(x;y) – произвольная точка гиперболы. Тогда согласно определению гиперболы |MF 1 – MF 2 |=2a или MF 1 – MF 2 =±2a,

28.Определение параболы, каноническое уравнение. Вывод канонического уравнения. Свойства . Параболой называется ГМТ плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой, также расположенной в рассматриваемой плоскости. F – фокус параболы; фиксированная прямая – директриса параболы. r=d,

r=; d=x+p/2; (x-p/2) 2 +y 2 =(x+p/2) 2 ; x 2 -xp+p 2 /4+y 2 =x 2 +px+p 2 /4;y 2 =2px;

Свойства : 1.Парабола имеет ось симметрии(ось параболы); 2.Вся

парабола расположена в правой полуплоскости плоскости Oxy при p>0, и в левой

если p<0. 3.Директриса параболы, определяемая каноническим уравнением, имеет уравнение x= -p/2.

"

Если две прямые в пространстве имеют общую точку, то говорят, что эти две прямые пересекаются. На следующем рисунке, прямые a иb пересекаются в точке A. Прямые а и с не пересекаются.

Любые, две прямые либо имеют только одну общую точку, либо не имеют общих точек.

Параллельные прямые

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и при этом не пересекаются. Для обозначения параллельных прямых используют специальный значок - ||.

Запись a||b означает, что прямая а параллельна прямой b. На рисунке представленном выше, прямые а и с параллельны.

Теорема о параллельных прямых

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной и притом только одна.

Скрещивающиеся прямые

Две прямые, которые лежат в одной плоскости, могут либо пересекаться либо быть параллельными. Но в пространстве две прямые не обязательно должны принадлежать оной плоскости. Они могут быть расположены в двух разных плоскостях.

Очевидно, что прямые расположенные в разных плоскостях не пересекаются и не являются параллельными прямыми. Две прямые, которые не лежат в одной плоскости, называются скрещивающими прямыми .

На следующем рисунке показаны две скрещивающиеся прямые a и b, которые лежат в разных плоскостях.

Признак и теорема о скрещивающихся прямых

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

Теорема о скрещивающихся прямых : через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Таким образом, мы рассмотрели все возможные случаи взаимного расположения прямых в пространстве. Их всего три.

1. Прямые пересекаются. (То есть они имеют лишь одну общую точку.)

2. Прямые параллельны. (То есть они не имеют общих точек и лежат в одной плоскости.)

3. Прямые скрещиваются. (То есть они расположены в разных плоскостях.)



Поделиться