Квантовый принцип суперпозиции. Квантовая суперпозиция: как физики учатся понимать её правильно

Квантовый мир очень далек от нашего, поэтому его законы часто кажутся нам странными и контринтуитивными. Однако важные новости из квантовой физики приходят буквально каждый день, так что иметь о них правильное представление сейчас необходимо - иначе работа физиков в наших глазах превращается из науки в магию и обрастает мифами. Мы уже говорили о квантовых компьютерах, нелокальности и квантовой телепортации. Сегодня речь пойдет о еще одной загадочной квантовой штуке - когерентности. Рассказывает о ней младший научный сотрудник Российского квантового центра Алексей Федоров.

Что такое когерентность? Есть ли какие-то хорошие аналогии из классической физики?

Понятие когерентности впервые возникает именно в классической физике, когда речь идет про колебания. Классическая когерентность - это постоянство относительной фазы между двумя или более волновыми процессами одной частоты. Когда говорят о когерентности всегда вспоминают интерференцию - эффект, при котором суммарный поток энергии от нескольких когерентных источников в некоторой точке пространства получается не непосредственным сложением потоков энергии от каждого источника, а чуть сложнее. Говоря формально, нужно сложить комплексные амплитуды, которые описывают приходящую от каждого источника волну, потом взять модуль полученного комплексного числа и возвести его в квадрат (с некоторым коэффициентом, чтоб с размерностями все было хорошо).

За счет суммирования комплексных амплитуд, а не интенсивностей, в пространственном профиле интенсивности образуется хорошо знакомая . Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.

Теперь к квантовой механике. Одним из основных положений квантовой механики является то, что микроскопические частицы в своем поведении проявляют волновые свойства. Но если в классической физике мы говорили, например, о волнах напряженности электромагнитного поля, то для микроскопических частиц речь идет волнах вероятности, описывающимися комплексными «амплитудами вероятности», известными также под названием «волновая функция». Именно эта идея заложена в уравнение Шрёдингера.

Для волн вероятности, как и любых других волн, также характерны все те же эффекты, связанные с возможностью наложения волн друг на друга. В квантовой механике такое наложение называют (когерентной) суперпозицией. Именно суперпозиция приводит к «квантовым» эффектам дифракции и интерференции.

Квантовые системы могут находиться в когерентной суперпозиции состояний, даже если это суперпозиция (с классической точки зрения) взаимоисключающих состояний. Прямое применение квантовых законов к классическому миру ведет к парадоксальным ситуациям, одна из наиболее известных - кошка Шрёдингера. Да, в ящик Шрёдингер хотел посадить именно кошку (die Katze), а не кота.

Почему когерентность необходима для квантовых вычислений?

Квантовая когерентность позволяет реализовать квантовый параллелизм. Архитектура квантовых компьютеров отличается от архитектуры классический вычислений в нескольких важных аспектах (про это в квантовой азбуке уже говорилось, но основы будет не лишним).

Система битов заменяется на систему кубитов, которая находится в некотором начальном состоянии. Логические операции выполняются не классическими логическими элементами, а их квантовыми аналогами. Таким образом, в квантовом компьютере через квантовый логический элемент («гейт») может проходить сразу целый набор (когерентная суперпозиция) входных сигналов, дающих суперпозицию соответствующих выходных сигналов. Это и обеспечивает преимущество квантовых вычислений над классическими в некоторых классах задач, например, в задаче факторизации.

Правда тут есть тонкость: после того как квантовый компьютер закончит вычисления, ответы к задачам, которые он решал, будут также находиться в состоянии суперпозиции. Как только мы попытаемся выяснить, каковы эти ответы, мы получим только один, случайно выбранный ответ. Но проделав вычисления много раз, мы можем говорить об ответе с достаточной степенью вероятности.

Квантовый компьютер имеет преимущество над классическим в определенных классах задач. С одной стороны, это ограничивает его применения и свидетельствует о том, что он, возможно, не заменит нам классический персональный компьютер. Хотя, высказывая подобные предположения стоит помнить о том, что на заре компьютерной эры миру приписывали необходимость всего в пяти компьютерах.

Кроме того, класс задач, с которым квантовый компьютер справляется лучше классического, лежит в основе современных представлений о криптографии и информационной безопасности. Так что возможное появление квантового компьютера уже меняет правила в информационных технологиях.

Что такое декогеренция, какие процессы могут к ней приводить?

В классической физике явление декогеренции также существует. Декогеренция - нарушение когерентности - это исчезновение когерентных свойств, связанное с потерей постоянства относительной фазы между источниками, что, например, приводит к разрушению интерференционной картины, о которой мы говорили выше.

В квантовой механике все сложнее и намного интереснее. Декогеренция представляет собой взаимодействие квантовой системы с окружающей средой, при котором квантовое состояние системы неконтролируемо изменяется. С точки зрения теории квантовой информации декогеренции соответствует возникновение запутанности между степенями свободы квантового состояния и степеняими свободы окружения.

При этом в окружение попадает часть информации о квантовом объекте, в то время, как в квантовую систему попадает часть информации об окружении. Декогеренция происходит из-за того, что хаос неопределенности состояния окружения врывается в состояние квантовой системы, изменяя его неконтролируемым образом.

Рассмотрим это на примере знаменитого опыта Юнга: будем стрелять из «квантового пулемета» частницами на экран с двумя щелями. Если после экрана поставить детектор электронов, то мы увидим интерференционную картину. В опыте Юнга интерференция пропадает тогда, когда в окружение попадает информации, через какую из двух щелей прошла частица. Это может быть связано, как с наличием специальной экспериментальной установки (например, подсвечивающих каждую из щелей «фонариков»), так и с неконтролируемыми экспериментаторами явлениями. Казалось бы это чудо, но нет - это «взаимодействие» квантовой системы с наблюдателем.

Если рассматривать поведение всех, в том числе и макроскопических, объектов с точки зрения квантовой механики, то декогеренции соответствует возникновение запутанности между конкретным квантовым объектом и окружением. По причине декогеренции мы не видим кошек, одновременно бегущих в противоположных направлениях.

Как определить, что произошла декогеренция?

Декогеренцию можно обнаружить, например, по исчезновению интерференционной картины. Есть такой простой эксперимент «Welcher Weg» («который путь»). В нем, фактически, мы просто посылаем фотоны на светоделитель, через который фотон либо проходит (назовем это «путь 1»), либо отражается (назовем это «путь 2»). Затем с использованием зеркал мы сводим два пути в другой светоделитель, на каждом из выходов которого стоит детектор одиночных фотонов.

К примеру, если в этом эксперименте интерферометр (т.е. соотношение между длинами путей) изначально был настроен на то, что все фотоны выходят строго в одном из двух направлений выходного светоделителя. При декогеренции, т.е. разрушения состояния когеретной суперпозиции между путями, они будут выходить с вероятностью 1/2 в каждом из двух направлений.

Предположим, квантовый компьютер выполнял некую операцию и произошла декогеренция (например, на середине исполнения алгоритма Шора, или каких-либо более простых операций). Каков будет результат вычисления, чем он будет отличаться от вычисления на полностью когерентных кубитах?

Декогеренция будет приводит к искаженному результату вычислений (который, возможно, еще и будет меняться от запуска к запуску) в выходном квантовом регистре. Например, в результате выполнения для числа 15 мы будем получать не стабильно 3 и 5, а с какой-то вероятностью 3 и 5, и с какой-то вероятностью всевозможные иные результаты (2 и 4, 3 и 6 и т.д.)

Как бороться с декогеренцией? Можете ли Вы привести какие-то примеры? Сложнее ли сохранять когерентность в многокубитных системах?

Для борьбы с декогеренцией нужен контроль окружения, поскольку даже малейшее воздействие окружения может привести к декогеренции. Таким образом, нужно чтобы изучать квантовые суперпозиции, необходимо тщательно изолировать их от окружающей среды.

Интересно, что последнее обстоятельство породило концепцию квантового сенсора: раз квантовые состояния так чувствительны к внешним воздействиям, значит с их помощью можно проводить сверхчувствительные измерения. Недавно с помощью квантового сенсора на NV-центрах было проведено измерение сигнала от отдельного нейрона .

На практике для борьбы с декогеренцией используются низкие температуры и различные компенсационные схемы для медленно меняющихся флуктуаций в параметрах окружающей среды. Например, ученые научились обращать декогеренцию вспять в экспериментах с «спиновым эхо» (о нем чуть ниже).

В многокубитных системах сложнее балансировать между необходимостью заставить кубиты «слышать» друга друга и «разговаривать» между собой, и при этом «не слышать» окружение. Принципиальных физических ограничений для этого нет, но на пути к решению такой задачи есть ряд технологический затруднений.

Как долго сохраняется когерентность в современных кубитах?

Недавно ученые Мэрилендского университета построили устройство из пяти кубитов на основе ионов иттербия в электромагнитных ловушках (о ней N+1 ). В частности, в этой работе, являющейся одной из самых свежих, это времена порядка секунд.

Насколько эта величина соответствует требованиям, предъявляемым концепцией квантовых компьютеров?

Нужно чтобы время когерентности превосходило время, за которое происходит вычисление и коррекция ошибок. Таким образом, достижимое время когерентности является достаточным чтобы проводить вычисления. Однако этого пока недостаточно, чтобы сделать полноценный и универсальный квантовый компьютер, поскольку для этого требуется долговременная память и другие элементы, в которых время когерентности должно быть больше. Другой интересный подход состоит в развитии топологических квантовых вычислений, которые являются устойчивыми к ошибкам.

Как связана декогеренция и коллапс волновой функции? Это про одно и то же?

Это «добрый полицейский» и «злой полицейский».

Суть обоих этих процессов состоит в утечке информации о состоянии квантовой системы в окружающую среду. Когда говорят о декогеренции, данный процесс представляется относительно плавным и растянутым во времени - как допрос доброго полицейского. В случае коллапса он подразумевается практически мгновенным и интенсивным - злому полицейскому нужны ответы сразу. И неважно что там с дальше будет с нашей квантовой системой.

Часто говорят о коллапсе волновой функции в момент измерения, хотя фактически измерение есть срежессированная версия декогеренции, при которой роль окружения берет на себя измерительный прибор, транслирующий информацию о квантовой системе на макроскопический уровень (условно говоря, на отклонение стрелки). Можно сказать, также, что коллапс волновой функции представляет собой предельный случай декогеренции.

А можно декогеренцию чуть-чуть сломать, а потом вернуть на место?

Исходя из природы процесса декогеренции понятно, что для обращения декогеренции требуется вернуть информацию, известную окружению о квантовой системе, обратно в квантовую систему, т.е. макроскопическому окружению требуется её «забыть». В общем, это очень сложно, поскольку процесс утечки информации является необратимым из-за того, что степеней свободы, в которых эта информация может храниться чрезвычайно много, и все они быстро обмениваются ей между собой. Поэтому чтобы вернуть все на свои места нужно достаточно хорошо контролировать окружение. Все как у людей, в общем.

Однако принципиально трюк по обращению декогеренции возможен, например, в эксперименте под названием «спиновое эхо». Его суть состоит в том, что время эволюции квантовой системы (например, ядерного спина) было гораздо меньше, чем время характерного изменения внешних условий (магнитного поля). Применяя специальную последовательность операций, можно обращать процесс утечке информации о квантовой системы вспять.

Подготовили материал Владимир Королев и Андрей Коняев

С.И. Доронин, Квантовая магия

2.4. Суперпозиция состояний

Наличие в окружающем нас мире «противоестественных» (с классической точки зрения) состояний, объективность их существования подтверждены физическими экспериментами, и этот факт является прямым следствием одного из самых фундаментальных принципов квантовой механики - принципа суперпозиции состояний . Или лучше сказать наоборот: это неотъемлемое свойство природы нашло свое отражение в основном теоретическом принципе квантовой механики. Сформулировать его можно следующим образом.

Принцип суперпозиции состояний : если система может находиться в различных состояниях, то она способна находиться в состояниях, которые получаются в результате одновременного «наложения» друг на друга двух или более состояний из этого набора.

В квантовой теории есть два качественно различных вида суперпозиции в соответствии с тем, что чистые состояния могут описываться вектором состояния, а смешанные - матрицами плотности. Поэтому и накладываться друг на друга могут либо векторы состояния, либо матрицы плотности. Мы пока будем говорить о суперпозиции чистых состояний, чтобы подчеркнуть это обстоятельство, обычно используют выражения «когерентная суперпозиция», «когерентные состояния».

В классической физике понятие суперпозиции тоже широко используется. Все мы рисовали в школе стрелочки векторов для сил, приложенных к телу, и по правилу параллелограмма (треугольника) находили результирующий вектор силы. Мы пользовались при этом принципом суперпозиции классической физики, суть которого в том, что результирующий эффект от нескольких независимых воздействий представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности. Он справедлив для систем или физических полей, описываемых линейными уравнениями.

Но в классической физике принцип суперпозиции является приближенным, а не универсальным, фундаментальным. Это скорее следствие линейности уравнений движения соответствующих систем и служит достаточно хорошим приближением, когда нелинейные эффекты незначительны.

Иная ситуация - в квантовой механике. В ней принцип суперпозиции является фундаментальным, одним из основных постулатов, определяющих структуру математического аппарата теории. Из него следует, например, что состояния квантовомеханической системы должны изображаться векторами линейного пространства, что операторы физических величин должны быть линейными и т. д.

Но основное отличие не в этом. Давайте вчитаемся еще раз более внимательно в формулировку этого принципа: если система может находиться в различных состояниях, то она может одновременно находиться сразу в двух (и более) состояниях! Например, если в качестве отдельных состояний системы взять пространственные координаты ее центра масс, и наша система способна принимать различные положения в пространстве, то из принципа суперпозиции следует, что она в состоянии находиться одновременно сразу во всех точках пространства - то есть быть полностью «размазанной» во всем пространственно-временном континууме. И это будет вполне естественное состояние с точки зрения квантовой теории! Для практической реализации такого необычного состояния системы нет принципиальных теоретических запретов. Разве это не удивительно? Не противоречит нашим привычным представлениям о реальности? Именно это явное противоречие «здравому смыслу» приводит в отчаяние уже не одно поколение физиков. Положение усугубляется тем, что никаких ограничений в квантовой теории на этот принцип не накладывается - он в равной степени применим и к макроскопическим объектам, и к микрочастицам.

Основное отличие принципа суперпозиции в квантовой теории от его классического аналога в том, что состояния, которые «накладываются» друг на друга в квантовой теории, - это альтернативные, взаимоисключающие состояния, когда одно из них полностью отрицает другое. Если мы находимся где-то в одном месте, значит, в другом месте нас нет - это подсказывает здравый смысл. Но в квантовой теории складываются именно такие взаимоисключающие состояния, и система может находиться в таких состояниях одновременно!

В классической физике, если взять те же силы, они вовсе не противоречат друг другу. Одна может спокойно действовать наряду с другой, и они вполне мирно «уживаются» друг с другом, а при их сложении мы получаем такую же обычную силу, которая не хуже и не лучше других сил. Только если мы сложим две противоположные и одинаковые по модулю силы, их равнодействующая будет равна нулю. Силы тогда взаимно компенсируются, они как бы «уничтожают» друг друга, и на тело вообще никакие силы действовать не будут.

А что получается в квантовой теории? Там все состояния несовместимы друг с другом. Но если мы сложим, например, два таких взаимоисключающих состояния, то уже не сможем сказать, что система при этом «уничтожится». Система при квантовом подходе может «исчезнуть» только в одном случае - если у нее нет вообще никаких состояний, а в случае суперпозиции мы имеем как минимум два. Отсутствие системы как элемента реальности в квантовой теории возможно лишь тогда, когда мы вообще не можем сопоставить с системой никаких состояний. Если такие состояния есть, значит, есть и система. Но вот что она из себя представляет , когда находится в суперпозиции двух взаимоисключающих состояний? Что происходит со спином, когда на состояние «спин-вверх » накладывается состояние «спин-вниз »? Это все равно что человек стоит одновременно «на ногах» и в то же самое время «вверх ногами». Как такое может быть, как это понимать? «Хороший вопрос», который может свести с ума, если подходить к нему с точки зрения наших привычных представлений о реальности.

Хотя и здесь может помочь аналогия с классическими представлениями. Если мы продолжим рассуждать о нашем примере с двумя противоположными силами, то придем к выводу, что ситуация в квантовой теории отдаленно ее напоминает. Итак, мы имеем равнодействующую двух сил, которая равна нулю, - что это означает? Можно сказать, что такой физической величины, как сила, для нашей системы в явном виде практически не существует. Две уравновешивающие силы находятся как бы в скрытом состоянии, они не проявлены, недоступны для восприятия и непосредственного наблюдения за результатами действия каждой из этих сил в отдельности. Лишь когда мы уберем одну из этих сил, то сможем явно убедиться в наличии второй, например, по ускорению, которое приобретет тело под действием оставшейся силы.

Что-то похожее происходит и в квантовой теории. Для простоты мы будем говорить о суперпозиции состояний с равными весами. Когда система пребывает в суперпозиции двух (и более) состояний, то в явном виде они не существуют - система не имеет характерных особенностей ни того, ни другого состояния. Так, если человек может находиться в двух состояниях - «на ногах» и «на голове» - то, когда он пребывает в суперпозиции этих состояний, мы, глядя со стороны, не увидим ни одного из них. На «языке» квантовой теории это означает, что система в этом случае находится в нелокальном состоянии - нет такого локального элемента реальности, который являлся бы «носителем» этих двух состояний. Человека в нашем примере вообще нет в качестве локального объекта, иными словами - «в своем физическом теле», и это вполне логично, поскольку ситуацию, когда мы видим его стоящим одновременно и «на ногах», и «на голове», действительно трудно себе вообразить. Но это не говорит о том, что наша система исчезла, перестала существовать. Так же, как и силы в классическом примере вовсе не исчезают от того, что одна из них уравновешивает другую. Они продолжают существовать, и в их наличии можно убедиться, нарушив равновесие этих сил, то есть каким-то образом воздействовав на систему.

В случае суперпозиции состояний похожая ситуация. Система имеет два различных состояния в качестве потенциально возможных локальных своих проявлений. Это те состояния, которые мы можем явно наблюдать и зафиксировать, но, чтобы их «проявить», нам необходимо с системой каким-то образом «проконтактировать ». Здесь есть два принципиально различных варианта: во-первых, произвести прямое измерение системы, то есть осуществить взаимодействие с измерительным прибором (окружением). В этом случае мы просто разрушаем суперпозицию состояний и «проявляем» одно из потенциальных состояний системы в его локальном, привычном для нас материальном облике. Этот физический процесс, как нам уже известно, называется декогеренцией. Второй вариант: «проявлять» то или иное локальное состояние при помощи так называемых унитарных (обратимых) операций. В этом случае сохраняется возможность снова перевести систему в суперпозиционное состояние. В этом заключается принципиальное отличие от первого варианта, где такая возможность утрачивается. Точнее, реализовать ее можно было только в том случае, если бы мы умели управлять состоянием всей объединенной системы, в состав которой вошла наша исходная система при взаимодействии. Такие унитарные операции сейчас применяются для манипулирования кубитами в квантовом компьютинге .

Необычную особенность квантовой суперпозиции - нелокальность и непроявленный потенциальный характер такого состояния, можно пояснить еще следующим образом. В отличие от классической суперпозиции, в квантовом случае мы никогда не получим промежуточное значение между состояниями, участвующими в суперпозиции. Например, классическая суперпозиция двух цветов, черного и белого, дает в результате серый цвет, но квантовая суперпозиция никакой серый цвет дать не в состоянии, никакого цвета вообще не будет - лишь при декогеренции, при взаимодействии (измерении) можно получить один из цветов - либо черный, либо белый.

Столь необычные состояния объектов, которые находятся в нелокальной суперпозиции, будоражат умы физиков уже многие десятилетия. Что будет, если мы совместим несовместимое? Что будет, если «наложим» друг на друга добро и зло, жизнь и смерть? В последнем случае часто вспоминают «кота Шредингера», которого физики приводят в качестве примера, поясняющего всю необычность состояний, существующих в окружающем мире, если не ограничиваться привычными рамками классической реальности. Такие состояния имеют место, когда мы готовы выйти за пределы предметного мира и хотим «заглянуть» в реальность более высокого уровня, более широкую, содержащую весь материальный мир в качестве своей составной части.

При квантовой суперпозиции живого и мертвого кота он не может находиться в некоем промежуточном полуживом (полумертвом) состоянии, как это могло иметь место в классическом варианте. Он именно одновременно и жив, и мертв, находится сразу в двух этих состояниях. Но вся парадоксальность такой ситуации в квантовой теории легко снимается, поскольку в этом случае кота просто нет в качестве локального объекта нашего материального мира. Можно сказать как угодно - что кот находится в потустороннем мире, в информационной сфере, в квантовом домене совокупной реальности и т. п. Но самое главное, что как обычного кота, которого можно погладить, - его просто нет. В своем физическом теле, в привычном облике кота, то есть в качестве локального объекта нашего материального мира он просто не существует. Он находится в состоянии более общего типа, а локальное состояние - только один из частных случаев, один из возможных вариантов бытия нашего кота. Он может проявиться из нелокальной суперпозиции в процессе декогеренции. Лишь тогда мы можем увидеть его, и уже не в каком-то парадоксальном сочетании жизни и смерти, а только в одном из этих состояний. Но такое объяснение квантовой теории, этот вывод, этот результат не всех устраивает. Ведь если система может находиться в таких «противоестественных» состояниях, то придется признать наличие более глубокой и всеобъемлющей реальности. Весь привычный для нас мир материи (вещества и физических полей) оказывается тогда лишь незначительной частью совокупной квантовой реальности. По сути, признание этого факта означает крушение основы мировоззрения большинства из нас. Поэтому многие не готовы принять эти выводы квантовой теории.

Но, может быть, принцип суперпозиции - это выдумка физиков-теоретиков? Возможно, это лишь математические манипуляции, которые не имеют под собой никакой реальной физики? Конечно же, нет, этот принцип не был «взят с потолка», уместно сказать, что он был выстрадан при становлении квантовой механики. Только с помощью этого принципа удавалось объяснить многие физические эксперименты, которые не укладывались в рамки классического описания. Это сама реальность при более пристальном взгляде на нее «подсказывала» тот способ, который позволял адекватно ее описывать, сама природа помогала найти тот теоретический метод, благодаря которому получались правильные количественные значения величин и удавалось точно предсказывать результаты физических экспериментов.

Стоило «копнуть» законы природы чуть глубже, как оказалось, что окружающий нас мир - лишь часть чего-то более емкого, всеобъемлющего. Квантовая теория раздвинула границы реальности, показав, что материальный мир и классические состояния - это далеко не все, что нас окружает. Принцип суперпозиции существенно расширил сферу состояний и оставил на долю классического мира только незначительную часть в пределах совокупной квантовой реальности.

Сама природа подсказала, что когерентные суперпозиционные состояния - вовсе не абстракция, а неотъемлемый элемент окружающей реальности. Собственно говоря, для объяснения физических процессов и явлений они и были введены. Но понадобилось достаточно много времени, прежде чем пришло понимание, почему в одних случаях суперпозиционные состояния имеют место, а в других нет, по каким законам они «живут», какие процессы нелокальную суперпозицию разрушают, а какие восстанавливают. И основная роль в том, что понимание этих процессов стало возможно, опять-таки принадлежит самой природе, поскольку ответы на эти вопросы исследователи стали получать в результате интенсивной практической работы над реальными физическими системами, позволяющими использовать когерентную суперпозицию в качестве рабочего ресурса для квантового компьютера и других технических устройств. Во многом благодаря непосредственной работе с когерентными состояниями, манипуляции ими в физических лабораториях, покров таинственности с нелокальных состояний стал спадать - они начали раскрывать свои поразительные свойства, удивительные особенности и небывалые, по сравнению с классическими состояниями, возможности.

Когерентные состояния очень чувствительны к внешним воздействиям. Они возможны для чистых состояний, то есть для замкнутых (изолированных) систем, либо для псевдочистых состояний (квазизамкнутых систем) в промежутках времени, которые меньше периода декогеренции. Может возникнуть вопрос: что толку в этих состояниях, если когерентная суперпозиция не наблюдаема, если любые попытки измерения (наблюдения) такую суперпозицию разрушают, приводят к декогеренции? Да, суперпозиция не наблюдаема, это нелокальное состояние. Наблюдать в виде локальных форм можно только результат декогеренции этого состояния. И, тем не менее, когерентные состояния научились использовать на практике. Когерентность по отдельным степеням свободы системы можно сохранять на временах, меньших времени декогеренции окружением, ее можно восстанавливать, поддерживать, ею можно манипулировать. При этом, как уже говорилось, когерентность не нарушают унитарные преобразования системы, и их сейчас широко используют для управления когерентными состояниями, например, в квантовом компьютинге .

Такие состояния обладают необычными свойствами. Наличие нелокальных корреляций между подсистемами (кубитами) обеспечивает согласованное их поведение, когда все кубиты ведут себя как единое целое, мгновенно реагируя на любые изменения состояния хотя бы одного из них. Все это оправдывает затраченные усилия, поскольку ресурс квантового компьютера в этом случае возрастает экспоненциально по сравнению с обычным . Квантовый компьютер все вычисления выполняет как бы в «потустороннем мире», за пределами материального мира локальных форм - там, где когерентная суперпозиция не нарушена. А результаты этих вычислений мы уже можем увидеть в привычной дискретной форме, «проявив» его при помощи процесса декогеренции.

Если говорить о теоретическом описании суперпозиционных состояний, о математическом формализме, то представление состояния в виде результата суперпозиции некоторого числа других состояний - это математическая процедура, которая всегда возможна и не имеет отношения к физике. Она аналогична разложению волны на компоненты Фурье. Имеет ли такое разложение физический смысл, будет ли оно полезно, зависит от конкретной задачи, от конкретных физических условий и тех величин, которые нас интересуют.

Вместе с тем, расширение класса состояний, изучение физики когерентных суперпозиционных состояний определяют некоторые специфические особенности в структуре математического аппарата квантовой теории. Как я пытался показать выше, принцип суперпозиции состояний - это что-то вроде операции суммирования. Суперпозиция означает, что состояния можно каким-то образом складывать, получая при этом новые состояния системы. Поэтому состояния необходимо связать с какими-либо математическими объектами, которые допускают сложение, и получаются математические объекты того же типа. Из наиболее простых математических структур, удовлетворяющих этим условиям, нам известны векторы, которые и сопоставляются различным состояниям системы. Такие векторы называются в квантовой теории векторами состояния - к их рассмотрению мы сейчас и перейдем.

Физики создали квантовую механику, чтобы описать законы мира, в котором живут микрообъекты. Но эти законы оказались настолько загадочны и контринтуитивны, что с некоторыми их аспектами учёные разбираются до сих пор. О свежих работах, посвящённых изучению явления квантовой суперпозиции, рассказывает кандидат физико-математических наук, старший научный сотрудник Института прикладной физики РАН, автор научно-популярного блога Артём Коржиманов.

Квантовая суперпозиция - основа квантовой механики

Квантовая механика, зародившаяся в начале XX века и окончательно сформировавшаяся в 1930-х годах, сейчас является хорошо проверенной и чрезвычайно успешной физической теорией. Наша цивилизация немыслима без технических достижений, обязанных своим появлением именно ей. Достаточно упомянуть, что компьютер, ноутбук или смартфон, с помощью которых вы читаете этот текст, никогда бы не были созданы, если бы не было квантовой механики.

Учёным, правда, пришлось заплатить большую цену за эти достижения, поскольку принципы, заложенные в основу квантовой теории, настолько сильно противоречат нашей интуиции, что даже самые сильные умы человечества выбрасывали белый флаг в попытках дать им какое-либо истолкование, которое отличалось бы от знаменитой фразы, приписываемой то Ричарду Фейнману, то Дэвиду Мермину: «Заткнись и считай!».

Одним из таких парадоксальных принципов является принцип квантовой суперпозиции. Вообще, с принципом суперпозиции все мы хорошо знакомы, хотя, возможно, и не называем его так в обыденной жизни. Обычно под суперпозицией понимают простое наблюдение: если одно действие приводит к одному результату, а второе действие - ко второму, то их совместное действие даст оба результата. Например, если вы купите яблоко, и ваш друг купит яблоко, то вместе вы купите два яблока. Принцип суперпозиции, конечно, выполняется не всегда: если в магазине в продаже осталось только одно яблоко, то двух яблок вы с другом никогда не купите, хотя по отдельности купить яблоко могли бы.

Квантовая суперпозиция, однако, существенно отличается от суперпозиции классической. Речь в квантовой теории идёт о суперпозиции не действий, а состояний. Например, если у вас есть две коробки, то электрон может находиться как в одной из них, так и в другой, но кроме того, оказывается, что он может находиться в суперпозиции этих двух состояниях - то есть в некотором смысле - в обоих коробках одновременно. Этот факт, противоречащий всему нашему житейскому опыту, был неоднократно подтверждён в различных экспериментах, причём не только с электронами, но и с более крупными объектами, вплоть до вполне себе макроскопических сверхпроводящих металлических колец, в которых ток одновременно течёт как по часовой, так и против часовой стрелки.

Двухщелевой эксперимент

Классическим примером, демонстрирующим явление квантовой суперпозиции, является опыт с двумя щелями. Этот эксперимент имеет настолько большое значение для понимания квантовой механики, что известный физик Ричард Фейнман в своих не менее известных «Фейнмановских лекциях по физике» называет его явлением, «которое невозможно, совершенно, абсолютно невозможно объяснить классическим образом. В этом явлении таится самая суть квантовой механики».

Суть опыта относительно проста. Пусть имеется источник частиц - это могут быть частицы света фотоны, электроны, атомы, а недавно опыт был проведён и для молекул, - и этот источник освещает непрозрачную для частиц пластинку. В пластинке проделаны две тонкие щели, а сзади неё поставлен экран, на котором прилетевшие частицы оставляют следы. Если мы закроем одну из щелей, то увидим на экране более или менее тонкую полосу напротив второй щели. Если мы закроем вторую щель и откроем первую, результат будет тот же, но полоса появится напротив первой щели. Вопрос в том, что будет, если открыть обе щели одновременно?

Обыденная интуиция подсказывает, что в этом случае на экране мы увидим просто две полосы. Или, если щели расположены достаточно близко друг к другу, одну более толстую полоску, получившуюся просто наложением полос от каждой из щелей. Однако Томас Юнг, который первым осуществил этот эксперимент ещё в начале XIX века, с удивлением наблюдал совсем другую картину. На экране явственно виднелось множество полосок, толщина которых была меньше толщины полос, получавшихся изначально. Сейчас мы называем это интерференционной картиной, а сам эффект - интерференцией на двух щелях.

Томас Юнг, однако, работал не с отдельными частицами, а с большим их количеством - с ярким источником света. Поэтому хотя его наблюдения и доказали, что свет - это волна, но истинного переворота в мировоззрении не произвели. Учёные просто стали описывать свет как волны. А для волн явление интерференции является естественным. Бросьте в воду два камушка и вы увидите, что расходящиеся от них круги, пересекаясь, образуют довольно сложный узор, который и будет интерференционной картиной.

Переворот случился в начале XX века. Сначала в теоретических работах Макса Планка и Альберта Эйнштейна была введена гипотеза, что свет состоит из частиц, а затем британскому физику Джефри Инграму Тейлору удалось повторить опыт Юнга, но с настолько слабым источником света, что на экране можно было засечь приход отдельных фотонов. При этом интерференционная картина, получавшаяся после прихода большого количества фотонов, оставалась такой же, как у Юнга. Таким образом, оказалось, что свет вроде бы состоит из частиц, но эти частицы ведут себя как волны.

Ещё сильнее усложнило ситуацию то, что аналогичный эффект был предсказан и для электронов - частиц, от которых уж точно ожидать волновых свойств и явления интерференции не приходилось. И хотя аналог опыта Юнга для электронов был осуществлён только в 1961 году немецким физиком Клаусом Йонссоном, наличие у них волновых свойств было доказано другими методами ещё в 1920-х годах.

Чтобы разрешить создавшееся противоречие, которое получило название корпускулярно-волнового дуализма, учёным пришлось предположить, что каждой частице соответствует некая волна - она получила название волновой функции, - которая зависит от того, в каком состоянии находится частица. Например, если частица прошла через одну щель, то это одно состояние и у него одна волновая функция, а если частица прошла через другую щель, то она находится в другом состоянии и у него другая волновая функция. Принцип квантовой суперпозиции при этом утверждает, что при двух открытых щелях частица находится в состоянии суперпозиции первого и второго состояний, и соответственно её волновая функция - это сумма двух волновых функций. Эта сумма и приводит к возникновению интерференционной картины. В этом смысле говорят, что частица проходит сразу через обе щели, поскольку если бы она проходила только через одну из них, то интерференционной картины бы не было.

Удивительно, но, несмотря на то, какую роль в квантовой физике играет двухщелевой эксперимент, многие учёные понимают его не совсем правильно. Более того, это некорректное объяснение присутствует в большинстве учебников по квантовой механике. Дело в том, что обычно явление суперпозиции в этом опыте объясняют так: волновая функция состояния, в котором находится электрон, прошедший через две щели, является суммой волновых функций состояний, в которых он находился бы, если бы одна из щелей была бы закрыта. Это объяснение, однако, не учитывает, что, открывая вторую щель, мы можем изменить то, как электрон проходит через первую. Возвращаясь к примеру с яблоками, представьте, что вы покупаете яблоко на деньги, которые взяли в долг у друга, тогда покупка двух яблок уже не пройдёт так же гладко, как покупка одним из вас одного яблока, потому что суммарных денег вам может и не хватить.

Трёхщелевой эксперимент: теория

Суть того, что происходит, когда открыто более одной щели, проще объяснить на примере опыта, в котором добавлена ещё одна щель. Кроме того, удобно перейти к альтернативному описанию квантовой физики, придуманному тем же Ричардом Фейнманом. В конце 1940-х годов он показал, что все результаты уже хорошо развитой тогда квантовой механики можно получить, не вводя никаких волновых функций, но предположив, что частица движется из одной точки в другую сразу по всем возможным траекториям, но «вес» каждой траектории, то есть её вклад в окончательный результат, различен и определяется по особым правилам.

Наибольшим весом обладают такие траектории, которые близки к классическим. Например, в случае двух щелей такие траектории показаны на рисунке ниже зелёным цветом.

Но вклад дают и многие другие траектории, и даже такие экзотические, на которых частица часть пути движется назад, а не вперёд. Среди них есть и такие, которые войдя в одну из щелей, затем проходят через другую и выходят через третью, как это показано фиолетовым на рисунке ниже.

Именно наличие таких неклассических траекторий и приводит к тому, что состояние частицы после прохода трёх щелей не равняется простой сумме состояний её прохода через каждую из них в отдельности при закрытых двух других. Отличие, конечно, обычно невелико, но, во-первых, оно может быть существенным, если вас интересуют какие-то слабые эффекты, а во-вторых, его можно усилить, прибегнув к специальным ухищрениям.

Первым на некорректность обычного объяснения принципа суперпозиции для двухщелевого эксперимента указал, по всей видимости, японский физик Х. Ябуки ещё в 1986 году, но его работа долгое время оставалась незамеченной. Современный интерес к этой теме возродила работа 2012 года, опубликованная в авторитетном журнале Physical Review A. В ней авторы рассмотрели случай классической волновой интерференции на трёх щелях на примере электромагнитных волн. Путём прямого численного моделирования фундаментальных для этой области уравнений Максвелла, они показали, что отличие правильного ответа от того, который получается при неправильной интерпретации принципа суперпозиции, в реалистичных условиях составляет около 0,5%. И хотя эта величина невелика, и измерить её экспериментально пока невозможно, сам эффект является неоспоримым.

Но всё же учёным хотелось бы проверить этот факт и экспериментально, поэтому в 2014 и 2015 годах одна и та же группа учёных, возглавляемая физиком-женщиной из Индии Урбаси Синха, опубликовала две статьи в Physical Review Letters и Scientific Reports, в которых подробно рассмотрела квантовую теорию прохождения частиц через три щели и показала, что эффект несовпадения правильного результата с предсказанием неправильной интерпретации может быть заметно усилен, если проводить измерения с электромагнитными волнами не оптического диапазона, то есть светом, а микроволнового диапазона - такие волны используются, например, в бытовых микроволновых печах для разогрева пищи.

Трёхщелевой эксперимент: практика

Урбаси Синха, комментируя статью 2014 года, утверждала, что её группа уже начала эксперимент с микроволнами, но их результаты до сих пор не опубликованы. Зато совсем недавно вышла статья ещё одной группы учёных, возглавляемых известным физиком Робертом Бойдом (он знаменит, например, тем, что первым осуществил эксперимент с «замедленным» светом). Статья была опубликована в Nature Communications и экспериментально продемонстрировала обсуждаемый эффект. Правда, идея этого эксперимента была другой.

Роберт Бойд и его коллеги предложили усилить «вес» неклассических траекторий вблизи пластинки со щелями за счёт использования так называемых плазмонов. Плазмоны - это что-то вроде «фотонов на привязи», которые могут бегать только вдоль поверхности металла от одной щели к другой. Для этого пластинку со щелями сделали из золота. Золото - отличный проводник, поэтому оно создаёт особо сильные плазмоны.

В эксперименте источник света облучал только одну из трёх щелей. При этом если две другие были закрыты, то наблюдалась типичная картина немного размытой полосы напротив открытой щели. Но когда две другие щели открывались, картина кардинально отличалась: возникала типичная интерференционная картинка со значительно более узкими полосками.

Сравнение изображений на экране в случае, когда две щели из трёх закрыты (слева) и когда открыты все три щели (справа). O. S. Magana-Loaiza et al., Nat. Commun. 7, 13987 (2016)

Зачем нужны все эти тонкости?

Могут ли эти исследования иметь какое-то практическое значение? Авторы упомянутых работ надеются, что да. Явление квантовой суперпозиции широко используется для так называемой квантовой коммуникации. На её основе, например, работает квантовая криптография. Именно явление суперпозиции даёт неоспоримые преимущества квантовым компьютерам по сравнению с компьютерами, основанными на традиционной электронике. Поэтому в этих направлениях точное понимание того, как работает квантовая суперпозиция, чрезвычайно важно. И именно поэтому можно надеяться, что исследования интерференции на трёх щелях помогут придумать новые, более эффективные протоколы для работы квантовых устройств.

Артём Коржиманов


Квантовая магия Доронин Сергей Иванович

2.4. Суперпозиция состояний

2.4. Суперпозиция состояний

Наличие в окружающем нас мире «противоестественных» (с классической точки зрения) состояний, объективность их существования подтверждены физическими экспериментами, и этот факт является прямым следствием одного из самых фундаментальных принципов квантовой механики - принципа суперпозиции состояний . Или лучше сказать наоборот: это неотъемлемое свойство природы нашло свое отражение в основном теоретическом принципе квантовой механики. Сформулировать его можно следующим образом.

Принцип суперпозиции состояний : если система может находиться в различных состояниях, то она способна находиться в состояниях, которые получаются в результате одновременного «наложения» друг на друга двух или более состояний из этого набора.

В квантовой теории есть два качественно различных вида суперпозиции в соответствии с тем, что чистые состояния могут описываться вектором состояния, а смешанные - матрицами плотности. Поэтому и накладываться друг на друга могут либо векторы состояния, либо матрицы плотности. Мы пока будем говорить о суперпозиции чистых состояний, чтобы подчеркнуть это обстоятельство, обычно используют выражения «когерентная суперпозиция», «когерентные состояния».

В классической физике понятие суперпозиции тоже широко используется. Все мы рисовали в школе стрелочки векторов для сил, приложенных к телу, и по правилу параллелограмма (треугольника) находили результирующий вектор силы. Мы пользовались при этом принципом суперпозиции классической физики, суть которого в том, что результирующий эффект от нескольких независимых воздействий представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности. Он справедлив для систем или физических полей, описываемых линейными уравнениями.

Но в классической физике принцип суперпозиции является приближенным, а не универсальным, фундаментальным. Это скорее следствие линейности уравнений движения соответствующих систем и служит достаточно хорошим приближением, когда нелинейные эффекты незначительны.

Иная ситуация - в квантовой механике. В ней принцип суперпозиции является фундаментальным, одним из основных постулатов, определяющих структуру математического аппарата теории. Из него следует, например, что состояния квантовомеханической

Из книги Геопсихология в шаманизме, физике и даосизме автора Минделл Арнольд

Из книги Сила безмолвия автора Минделл Арнольд

Из книги Темная и светлая сторона реальности автора Зорин Петр Григорьевич

Из книги Книга теорем 2 автора Ленский Василий Васильевич

Суперпозиция Суперпозиция, явление наложения волн, представляет собой их особое свойство, которое наблюдается всякий раз, когда волны встречаются друг с другом. Такое взаимное сложение и вычитание, суперпозиция, не происходит с частицами - это характерно только для

Из книги Наука, Традиция, Ягра о возможностях и методах развития человека автора Заречный Михаил

О влиянии состояний Отрицательное состояние, в котором иногда пребывает человек, у других людей, которые находятся с ним в контакте, может вызывать или чувство раздражения, или чувство вины. И то и другое ответное чувство в действительности носит защитный характер. Тот,

Из книги Квантовая магия автора Доронин Сергей Иванович

Суперпозиция двухполярных пространств Суперпозиционные локи Если аксиома 1 и аксиома 6 дают возможность взаимодействия самих лок, то возникнет вопрос о законах взаимодействия между всеми объектами, если поставлены в суперпозицию несколько лок одного числа

Из книги Автоматический уничтожитель иллюзий, или 150 идей для умных и критичных автора Минаева Екатерина Валерьевна

Суперпозиция трёхполярных пространств «Кватернионы» были первым шагом к введению изоморфных четырёхполярных пространств в суперпозицию. Пропущены не только двухполярные, но и трёхполярные пространства, которые могут вводиться в суперпозицию Необходимость в том,

Из книги Психоэнергетические основы нравственности автора Баранова Светлана Васильевна

Кватернионы. Суперпозиция четырёхполярных пространств История После создания теории «комплексных чисел» возник вопрос о существовании «гиперкомплексных» чисел - чисел с несколькими «мнимыми» единицами. Такую систему построил в 1843 году ирландский математик У.

Из книги Интегральная духовность. Новая роль религии в современном и постсовременном мире автора Уилбер Кен

Из книги Фаза. Взламывая иллюзию реальности автора Радуга Михаил

Глава 1 Магия запутанных состояний

Из книги автора

5.8. Реализация запутанных состояний сознания Мы пока не затронули еще один очень важный

Из книги автора

Из книги автора

1.3. О матрице человеческих состояний Человеческие состояния образуют матрицу человеческих состояний, которая лежит в основе индивидуальных мира и реальности человека. А также матрица человеческих состояний участвует в формировании событий и ситуаций, с помощью которых

Из книги автора

6.1. О матрице эгоистических состояний Личность и эго, внедрившись в энергетические структуры людей, сделали из человеческих существ эгоистов.Эгоист – это тот, для кого интересы личности являются главными. Основой для действий эгоиста является эгоцентризм, т. е.

Из книги автора

Влияние состояний на стадии Есть ещё одна причина, почему религии для того, чтобы действовать в роли великой конвейерной ленты развития человечества, должны включить медитативные, созерцательные и необычные состояния (грубые, тонкие, причинные, недвойственные) в свой

Из книги автора

Суть применения фазовых состояний Изначально фаза дает столь много эмоций и различного рода переживаний, что у практика не возникает вопроса о том, как это применять для чего бы то ни было. Но чем больше приходит разового опыта, тем актуальнее становится этот вопрос.

Точки зрения, это суперпозиция альтернативных (взаимоисключающих) состояний. Принцип существования суперпозиций состояний обычно называется в контексте квантовой механики просто принципом суперпозиции .

Если функции Ψ 1 {\displaystyle \Psi _{1}\ } и Ψ 2 {\displaystyle \Psi _{2}\ } являются допустимыми волновыми функциями, описывающими состояние квантовой системы, то их линейная суперпозиция, Ψ 3 = c 1 Ψ 1 + c 2 Ψ 2 {\displaystyle \Psi _{3}=c_{1}\Psi _{1}+c_{2}\Psi _{2}\ } , также описывает какое-то состояние данной системы. Если измерение какой-либо физической величины f ^ {\displaystyle {\hat {f}}\ } в состоянии | Ψ 1 ⟩ {\displaystyle |\Psi _{1}\rangle } приводит к определённому результату , а в состоянии | Ψ 2 ⟩ {\displaystyle |\Psi _{2}\rangle } - к результату , то измерение в состоянии | Ψ 3 ⟩ {\displaystyle |\Psi _{3}\rangle } приведёт к результату f 1 {\displaystyle f_{1}\ } или f 2 {\displaystyle f_{2}\ } с вероятностями | c 1 | 2 {\displaystyle |c_{1}|^{2}\ } и | c 2 | 2 {\displaystyle |c_{2}|^{2}\ } соответственно.

Из принципа суперпозиции также следует, что все уравнения на волновые функции (например, уравнение Шрёдингера) в квантовой механике должны быть линейными.

Любая наблюдаемая величина (например, положение, импульс или энергия частицы) является собственным значением эрмитова линейного оператора , соответствующим конкретному собственному состоянию этого оператора, то есть определённой волновой функции, действие оператора на которую сводится к умножению на число - собственное значение. Линейная комбинация двух волновых функций - собственных состояний оператора также будет описывать реально существующее физическое состояние системы. Однако для такой системы наблюдаемая величина уже не будет иметь конкретного значения, и в результате измерения будет получено одно из двух значений с вероятностями, определяемыми квадратами коэффициентов (амплитуд), с которыми базисные функции входят в линейную комбинацию. (Разумеется, волновая функция системы может быть линейной комбинацией и более чем двух базисных состояний, вплоть до бесконечного их количества).

Важными следствиями квантовой суперпозиции являются различные интерференционные эффекты (см. опыт Юнга , дифракционные методы), а для составных систем - зацепленные состояния .

Популярный пример парадоксального поведения квантовомеханических объектов с точки зрения макроскопического наблюдателя - кот Шрёдингера , который может представлять собой квантовую суперпозицию живого и мёртвого кота. Впрочем, достоверно ничего не известно о применимости принципа суперпозиции (как и квантовой механики вообще) к макроскопическим системам.

Отличия от других суперпозиций

Квантовую суперпозицию (суперпозицию «волновых функций »), несмотря на сходство математической формулировки, не следует путать с



Поделиться