Как выглядит плутоний. плутоний - применение

В отличие от США,Германия имела все предпосылки для создания атомной бомбы

Немецкие учёные значительной частью конечно же отрицали свою причастность к созданию атомной бомбы в Германии—но могли ли они сказать правду?...вряд ли

НАЧАЛО

На возможность создания атомной бомбы руководство рейха обратило свое внимание в 1938 году, после известных открытий Гана и Гейзенберга. Именно тогда группа выдающихся ученых направляет Генриху Гиммлеру письмо, в котором говорится:

«Рейхсфюрер! Недавние открытие в области деления уранового ядра позволяют с уверенностью утверждать, что вскоре оно послужит для создания оружия невиданной прежде мощи. Это оружие, если оно окажется в руках Германии, позволит сокрушить всех наших врагов; но если наши противники опередят нас, Третий рейх ждут неисчислимые бедствия.

Поэтому мы считаем исключительно важным дать этому оружию высший приоритет и направить все возможные средства на атомные исследования.»

РУКОВОДСТВО ПРОЕКТА

Общий контроль над всеми научно-исследовательскими, политическими, и материальными направлениями развития германского атомного проекта осуществлял главнокомандующий сухопутных войск рейха.

С самого начала работ по атомной энергии это был генерал-фельдмаршал Браухич, а с 19 декабря 1941 года — Адольф Гитлер.

Прямыми заказчиками и руководителями Уранового проекта были Имперское министерство вооружения и боеприпасов и Верховное командование армии. Проявляемый этими ведомствами пристальный интерес к ядерным исследованиям напрямую стимулировал финансирование и контроль над работами по овладению атомной энергией.

ОРГАНИЗАТОРЫ

Специальный отдел физики имперского исследовательского совета: руководитель государственный советник, профессор, доктор Абрахам Эзау.Управление армейского вооружения: генерал Лееб.

КАДРОВЫЙ СОСТАВ

В 1939-1941 годах нацистская Германия располагала соответствующими условиями для создания атомного оружия: она имела необходимые производственные мощности в химической, электротехнической, машиностроительной промышленности и цветной металлургии, а также достаточные финансовые средства и материалы общего назначения. Научный потенциал также был очень высок, и имелись необходимые знания в области физики атомного ядра.

Такие всемирно известные учёные, как О. Ган, В. Гейзенберг, В. Герлах, К. Дибнер, К. Ф. фон Вайцзеккер, П. Дебай, Г. Гейгер, В. Боте, Г. Гофман, Г. Йос, Р. Дёпель, В. Ханле и В. Гентнер, Э. Шуман и многие другие, обеспечивали значительные успехи атомного проекта.

УРАН

Германия обладала единственными в Европе урановыми приисками в Судетах.

Итак, с сырьем полный порядок. С его обогащением тоже не было проблем, имелось, как минимум, три технологии выделения изотопа уран-235 из массы сырья, причем по эффективности они значительно превосходили американские.

Вдобавок немцы захватили уран из бельгийского Конго—но этот уран был лишним…из-за избытка своего у немцев

США едва ли к середине 1944 года могли приобрести хотя бы 50 кг урана….

Одну из них разработал ученый-ядерщик барон Манфред фон Арденне.

После окончания войны он добровольно пошел на сотрудничество с Советским Союзом, уехал в нашу страну и впоследствии получил две Сталинские премии, которые давали лишь за самые выдающиеся достижения и только гражданам СССР.

Фон Арденне стал одним из немногих иностранных ученых, кто ее получил.

ЗАВОД АУШВИЦ

Завод по обогащению урана — огромное производство, которое пожирает массу электроэнергии и воды, там требуется много рабочих рук. Скрыть такую махину невозможно, особенно в Германии, которую самолеты-разведчики союзников регулярно «прочесывали».

Но вот в Аушвице (немецкое название польского города Освенцим) начинается строительство огромного завода по производству синтетического каучука.

Строит концерн I.G. Farbenindustrie AG, на собственные деньги. Дармовой рабочей силы навалом, рядом протекают три реки, имеются хорошие подъездные пути.

К тому же Освенцим и предприятия вокруг него не бомбят, но вовсе не из соображений гуманизма — их инвесторами были американские капиталисты.

Завод построен, но ни одного килограмма каучука он так и не выдал, хотя постоянно расходовал прямо-таки чудовищное количество электричества. В I.G. Farben плакались: мы разорены, проект убыточный, требовали от властей компенсировать финансовые потери.

В общем, ломали комедию.

А в 1944 году, незадолго до того, как Освенцим освободила Красная армия, завод эвакуировали в неизвестном направлении.

Более чем странное предприятие, скорее всего, и было тем местом, где немцы обогащали уран, да и до приисков от него было рукой подать.

Статистика производства металлического урана в Германии (фирма «Дегусса», Франкфурт) в период войны:

1940 г. — 280,6 кг (в лаборатории)

1941 г. — 2459,8 кг (на заводе)

1942 г. — 5601,7 кг (на заводе)

1943 г. — 3762,1 кг (на заводе)

1944 г. — 710,8 кг (на заводе)

В 1944 году компания начала производство металлического урана в Берлин-Грюнау

декабрь 1944 г. — 224 кг

январь 1945 г. — 376 кг

февраль 1945 г. — 286 кг

РАЗРАБОТКА

До 1942 года нигде в мире не было лучшей технологии обогащения урана, чем в рейхе.

Около 70 немецких учёных, занятых ядерными исследованиями, начали работы по разделению изотопов урана методом центрифугирования.

Несколько групп исследователей выполнили предварительные опыты с урановым "котлом". Это показало, что запуск реактора - лишь вопрос времени и ресурсов.

Немецкие учёные работали в режиме секретности под руководством рейхсминистра почты Вильгельма Онезорге. Он был ярым сторонникомисследований в области ядерной физики и курировал исследовательский центр в Мирсдорфе под Берлином - "Ведомство по особым физическим вопросам".

Онезорге заключил договор с учёным Манфредом фон Арденне, который слыл блестящим экспериментатором. К работе подключился руководимый им научный центр в берлинском районе Лихтерфельде.

Выделять изотопы урана и тем самым добывать "начинку" для атомной бомбы - это и был путь создания "чудо-оружия". Для этого нужен ядерный реактор.

Недалеко от Берлина существовали экспериментальные установки рейхсминистерства почты, на которых можно было получать уран-235.

Проблема заключалась в том, что за час работы установки можно было получить приблизительно 0,1 грамма урана, за десять рабочих часов в день, на трёх установках - 3 грамма. За год свыше 300 граммов. Этого было недостаточно для создания атомной бомбы.

Тогда немецкие атомщики пришли к идее ядерного взрыва малой мощности. Критическую массу можно было снизить путем сочетания расщепления ядра с ядерным синтезом.

При применении подобных хитростей можно было изготовить боеспособную бомбу, для которой потребовалось бы лишь несколько сот граммов высокообогащенного атомного вещества.

Уран-235 можно было обогатить и обратить в плутоний…

В августе 1941г.авторитетный атомщик Хоутерманс написал статью «К вопросу о начале цепной реакции деления ядер» где он первым из немецких ученых подробно описал цепную реакцию под действием быстрых нейтронов, а также рассчитал критическую массу U-235, то есть наименьшую массу, при которой может протекать самоподдерживающаяся цепная ядерная реакция (от 10 до 100кг. американцы пришли к тем же примерно цифрам лишь в ноябре 1941-го).

Но в первую очередь его интересовал плутоний, использование кото-ого делало ненужным разделение изотопов урана.

УРАН И ПЛУТОНИЙ

Как известно, использование атомной энергии человеком началось с урана -235, который был и остается важнейшим видом ядерного горючего. Можно было бы иметь гору природного урана, но не использовать нисколько заключенной в нем энергии, если бы в нем не содержался делящийся изотоп уран -235. Этот изотоп хорошо делится нейтронами любых энергий. Однако в природном металле его очень маловсего 0,7%.

Остальные 99,3% составляет изотоп уран -238, который делится только быстрыми нейтронами. Зато уран -238 отлично поглощает промежуточные нейтроны с энергией от 1 до 10 эв.

И тут начинаются чудеса.

Если с помощью замедлителя графита, тяжелой или обычной воды и других веществ замедлить до этой энергии выбрасываемые при делении ядер изотопа урана -235 быстрые нейтроны, то, захватив такой медленный нейтрон, ядро атома урана -238 приходит в сильно возбужденное состояние и, распадаясь, превращается в конечном итоге в плутоний, период полураспада которого равен уже 24,40 года.

Самое замечательное то, что он становится как бы двойником урана -235 также делится и быстрыми и медленными нейтронами.

А это позволяет в ходе выгорания урана -235 одновременно превратить малую толику практически неделящегося урана -238 в делящийся плутоний -239.

Параллельной программой исследований руководил военный инженер Курт Дибнер под наблюдением выдающегося немецкого физика Вальтера Герлаха, руководителя германского "Уранового клуба" .

Главным теоретиком Uranverein являлся Вернер Гейзенберг.

К 1944 году в работах по созданию атомной бомбы участвовали также Управление по вооружению (Heereswaffe-namt) и СС.

ГЕЙНЗБЕРГ

В начале апреля 1941г. состоялось очередное совещание ведущих ядерщиков Германии.На совещании докладывал Гейзенберг как научный руководитель Уранового проекта.

Гейзенберг доходчиво изложил содержание понятия «ядерные превращения», остановился на перспективах, подчеркнув, что «исследования за предыдущие три года не дали возможности высвободить для технических целей то большое количество энергии, которое сосредоточено в атомном ядре».

Были предложены варианты применения атомной энергии и обсуждена перспектива получения взрывчатого вещества.

О путях извлечения урана-235 он сказал, что «еще не достигнут окончательный прогресс»; о плутониевом варианте — следующие слова:

«Я хотел бы в этом месте упомянуть, что по положительным результатам, полученным в последнее время, кажется, не исключается, что сооружение уранового реактора и способ, указанный Вайцзеккером, однажды могут привести к получению взрывчатого вещества, которое превзойдет по своему действию все известные до сих пор в миллион раз».

Доклад произвел сильное впечатление.

Фельдмаршал Мильх сказал:

«Скажите, профессор, каков будет примерный размер бомбы, способной уничтожить миллионный город?

Дело в том, что в. отместку за бомбардировку Кёльна неплохо было бы стереть с лица земли Лондон. Одно меня тревожит: сможет ли наш бомбардировщик поднять громадную бомбу?»

Гейнзберг:

«Она будет не больше ананаса»

Эти слова вызывают восторженный и тревожный ропот в зале.

Мильх спрашивает снова:

«А наши враги тоже работают над этим оружием?»

Гейзенберг:

«... Необходимо, если воина с Америкой продлится еще много лет, считаться с тем, что техническая реализация энергии атомного ядра однажды может сыграть решающую военную роль.»

Мильх сказал:

«Ну, до этого мы разобьем их всех наголову. Теперь скажите, профессор, когда Германия получит обещанное вами новое оружие?»

Гейзенберг сказал:

«Нужно учесть ограниченность экономических возможностей. Германии... До сих пор не найдено эффективных способов разделения изотопов урана... Создание самоподдерживающейся реакции упирается в проблему чистого металлического урана и особенно тяжелой воды. Нет, нет, о бомбе в ближайшие месяцы и думать нечего, для изготовления атомной бомбы потребуются годы!»

Такая неопределенность не устраивала Шпеера: он вынудил Гейзенберга точнее высказаться о сроках.

Гейзенберг ответил, что научное решение не будет трудным, но решение производственно-технических проблем должно занять не менее двух лет, и то при условии, если каждое требование ученых будет выполняться.

С такой перспективой можно было согласиться, ибо срок был невелик.

ИНЫЕ ОЦЕНКИ

В своем первом письме руководителям ядерных разработок начальник отдела ядерной физики имперского исследовательского совета А. Эзау писал:

«После того как работы, проводившиеся Управлением армейского вооружения, сдвинулись с места в принципиальном решении поставленной задачи, я вижу нынешнюю задачу в продолжении опытов и увеличении действенности опытных установок.

Принимая во внимание современное напряженное положение и достигнутые результаты, я буду вынужден, однако, потребовать еще большей целеустремленности, чем прежде...».

8 мая 1943 г. руководитель планового управления имперского исследовательского совета В. Озенберг в связи с получением соответствующих разведывательных, данных из США докладывал Герингу, что и в Германии проводится работа над созданием урановой бомбы.

В ОДНОМ ШАГЕ ОТ БОМБЫ

В конце мая 1944г. профессор Герлах кратко пометил в служебном отчете:

«Вопрос производства ядерной энергии отличным от расщепления урана путем решается на самой широкой основе». Короче говоря в лаборатории Дибнера готовились к термоядерному синтезу.»

Подробности работы сохранил лишь шестистраничный отчет—«Опыты возбуждения ядерных реакций с помощью взрывов»

Он в итоге выглядел так:

«На полигоне войск СС в Куммерсдорфе было проведено несколько опытов по инициированию термоядерных реакций посредством подрыва кумулятивных зарядов обычного взрывчатого вещества.

В последнем полый серебряный шар диаметром 5см. наполнили тяжелым водородом и обложили со всех сторон взрывчаткой. Серебро должно было сохранить следы радиоактивного излучения, вызванного термоядерными реакциями.

Взрывчатка воспламенялась одновременно с разных сторон. Серебряный шар под действием взрыва сжимался со скоростью 2500м/с. температура и давление достигали громадных величин. Опыт несколько раз, но следов радиоактивного излучения так и не обнаружили.»

Впоследствии специалисты, оценивая опыт, считали, что размеры шара были слишком малы.

ДАЖЕ СКЕПТИК БОР ЗНАЛ ЧТО ГОВОРИЛ

Нильс Бор,не веривший в создание бомбы,после того как эмигрировал в Англию написал Гейзенбергу письмо….оно так и не было доставлено адресату,но говорило о многом.

«Дорогой Гейзенберг … я помню каждое слово наших бесед… вы в туманных выражениях сообщили: под вашим руководством в Германии делается все для того, чтобы создать атомную бомбу»

ЗАКЛЮЧЕНИЕ

Немецкий урановый проект шел полным ходом….и то что якобы он не был приоритетом у немцев—всего лишь миф

(Pu) – серебристо-белый радиоактивный металл группы актиноидов, теплый на ощупь (из-за своей радиоактивности. В природе встречается в очень малых количествах в уранитовий смолке и других рудах урана и церия, в значительном количестве получают искусственно. Около 5 тонн плутония выброшено в атмосферу в результате ядерных испытаний.
История
Открытый 1940 Гленом Сиборг (Glenn Seaborg), Эдвином Макмиллан (Edwin McMillan), Кеннеди (Kennedy) и Артуром Уолхом (Arthur Wahl) 1940 года в Беркли (США) во время бомбардировки урановой мишени дейтронами, ускоренными в циклотроне.
Происхождение названия
Плутоний был назван в честь планеты Плутон, поскольку предыдущий открытый химический элемент получил название Нептуний.
Получение
Плутоний получают в ядерных реакторах.
Изотоп 238 U, что составляет основную массу природного урана, мало пригоден к делению. Для ядерных реакторов уран несколько обогащают, но доля 235 U в ядерном топливе остается небольшой (примерно 5%). Основную часть в ТВЭЛах составляет 238 U. Во время работы ядерного реактора часть ядер 238 U захватывает нейтроны и превращается в 239 Pu, который в дальнейшем можно выделить.

Выделить плутоний среди продуктов ядерных реакций достаточно сложно, так как плутоний (как и уран, торий, нептуний) относится к очень похожих между собой по химическим свойствам актиноидов. Задача усложняется тем, что среди продуктов распада содержащихся редкоземельные элементы, химические свойства которых тоже подобные плутония. Применяют традиционные радиохимические методы – осаждение, экстракцию, ионный обмен и т.д. Конечным продуктом этой многостадийной технологии являются оксиды плутония PuO 2 или фториды (PuF 3, PuF 4).
Добывают плутоний методом Металлотермия (восстановлением активными металлами из оксидов и солей в вакууме):

PuF 4 +2 Ba = 2BaF 2 + Pu

Изотопы
Известно более десятка изотопов плутония, все они радиоактивны.
Важнейшим является изотоп 239 Pu, способный к делению ядра и цепной ядерной реакции. Это единственный изотоп, пригодный для использования в ядерном оружии. Имеет лучшие, чем уран-235, показатели поглощения и рассеяния нейтронов, количества нейтронов на одно деление (около 3 против 2,3) и, соответственно, меньшую критическую массу. Его период полураспада составляет около 24 тыс. лет. Другие изотопы плутония рассматривают прежде всего с точки зрения вредности для основного (вооруженного) применения.
Изотопу 238 Pu имеет мощную альфа-радиоактивность и, как следствие, значительное тепловыделение (567 Вт / кг). Это создает неудобства для использования в ядерном оружии, но находит применение в ядерных батареях. Почти все космические аппараты, улетевшие за орбиту Марса, имеют радиоизотопные реакторы на 238 Pu. В реакторном плутонии доля этого изотопа очень незначительна.
Изотоп 240 Pu является основным загрязнителем оружейного плутония. Имеет высокую интенсивность спонтанного распада, создает высокий нейтронный фон, что существенно усложняет подрыв ядерных зарядов. Считают, что его доля в оружии не должна превышать 7%.
241 Pu имеет низкий нейтронный фон и умеренную тепловую эмиссию. Его доля составляет чуть менее 1% и на свойства оружейного плутония не влияет. Однако с периодом полураспада 1914 превращается в америций-241, который выделяет много тепла, что может создавать проблему перегрева зарядов.
242 Pu имеет очень малое сечение реации захвата нейтронов и накапливается в ядерных реакторах, хотя и в очень небольшом количестве (менее 0,1%). На свойства оружейного плутония не влияет. Его применяют в основном для дальнейших ядерных реакций синтеза трансплутониевого элементов: тепловые нейтроны не вызывают деления ядра, поэтому любые количества этого изотопа можно облучать мощными потоками нейтронов.
Другие изотопы плутония встречаются чрезвычайно редко и не имеют влияния на изготовление ядерных зарядов. Тяжелые изотопы образуются в очень незначительных количествах, имеют небольшое время жизни (менее нескольких дней или часов) и, путем бета-распада, превращаются в соответствующие изотопы америция. Среди них выделяется 244 Pu – его период полураспада составляет около 82 млн. лет. Это самый изотоп среди всех трансурановых элементов.
Применение
На конец 1995 года в мире было произведено около 1270 тонн плутония, из них 257 тонн – для вооруженного использования, для которого пригоден только изотоп 239 Pu. Возможно применение 239 Pu качестве топлива в ядерных реакторах, но он проигрывает урана по экономическим показателям. Стоимость переработки ядерного топлива для добычи плутония намного больше, чем стоимость низкообогащенного (~ 5% 235 U) урана. Программу энергетического использования плутония имеет только Япония.
Аллотропные модификации
В твердом виде плутоний имеет семь аллотропных модификаций (однако фазы? и?1 иногда объединяют и считают одной фазе). При комнатной температуре плутоний представляет собой кристаллическую структуру, которая называется ?-фаза. Атомы связаны ковалентной связью (вместо металлического), поэтому физические свойства ближе к минералам чем к металлам. Это твердый, хрупкий материал, ломается в определенных направлениях. Имеет низкую теплопроводность среди всех металлов, низкую электропроводность, за исключением марганца. ?-фаза не поддается обработке обычными для металлов технологиями.
При изменениях температуры в плутонии происходит перестройка структуры и он испытывает чрезвычайно сильные изменения. Некоторые переходы между фазами сопровождаются просто поразительными изменениями объема. В двух из этих фаз (? и?1) плутоний обладает уникальным свойством – отрицательный температурный коефициент расширения, т.е. он сжимается с увеличением температуры.
У гамма и дельта фазах плутоний проявляет обычные свойства металлов, в частности ковкость. Однако в дельта-фазе плутоний проявляет нестабильность. Под небольшим давлением он пытается осесть в плотную (на 25%) альфа-фазу. Это свойство применяют в имплозийних устройствах ядерного оружия.
В чистом плутонии под давлением свыше 1 килобар дельта-фаза вообще не существует. Под давлением более 30 килобар существуют только альфа-и бета-фазы.
Металлургия плутония
Плутоний можно стабилизировать в дельта-фазе при обычном давлении и комнатной температуры путем образования сплава с трехвалентными металлами, такими как галлий, алюминий, церий, индий в концентрации несколько молярных процентов. Именно в таком виде плутоний применяют в ядерном оружии.
Вооруженный плутоний
Для производства ядерного оружия нужно достичь чистоты нужного изотопа (235 U или 239 Pu) более 90%. Создание зарядов из урана требует многих стадий обогащения (потому, что доля 235 U в природном уране составляет менее 1%), в то время как доля 239 Pu в реакторном плутонии обычно составляет от 50% до 80% (т.е. почти в 100 раз больше). А в некоторых режимах работы реакторов можно получить плутоний, содержащий более 90% 239 Pu – такой плутоний не требует обогащения и может использоваться для изготовления ядерного оружия напрямую.
Биологическая роль
Плутоний является одной из самых токсичных известных веществ. Токсичность плутония обусловлена не столько химическими свойствами (хотя плутоний, пожалуй, токсический как любой тяжелый металл), сколько его альфа-радиоактивности. Альфа-частицы задерживаются даже незначительными слоями материалов или тканей. Скажем, несколько миллиметров кожи полностью поглотит их поток, защищая внутренние органы. Но альфа-частицы наздвичайно сильно повреждают ткани, с которыми они контактируют. Итак, плутоний представляет серьезную опасность, если попадает в организм. Он очень плохо всасывается в желудочном тракте, даже если попадает туда в растворимом виде. Но поглощения полграмма плутония может привести к смерти в течение нескольких недель вследствие острого облучения путей пищеварения.
Вдыхание десятой доли грамма пыли плутония приводит к смерти от отека легких в течение десяти дней. Вдыхание дозы в 20 мг приводит к смерти от фиброза течение месяца. Меньшие дозы вызывают кацерогенний эффект. Попадание в организм 1 мкг плутония увеличивает вероятность рака легких на 1%. Следовательно, 100 мкг плутония в организме почти гарантируют развитие рака (в течение десяти лет, хотя повреждения тканей могут оказался и раньше).
В биологических системах плутоний обычно находится в степени окисления +4 и обнаруживает сходство с железа. Попадая в кровь, он наиболее вероятно будет концентрироваться в тканях, содержащих железо: костном мозге, печени, селезенке. Если даже 1-2 микрограмма плутония осядут в костном мозге, иммунитет существенно ухудшится. Период выведения плутония из костной ткани составляет 80-100 лет, т.е. он будет оставаться там практически в течение всей жизни.
Международная комиссия по радиологической защите установила величину максимального ежегодного поглощения плутония на уровне 280 нанограмм.

Плутоний
Атомный номер 94
Внешний вид простого вещества
Свойства атома
Атомная масса
(молярная масса)
244,0642 а. е. м. ( /моль)
Радиус атома 151 пм
Энергия ионизации
(первый электрон)
491,9(5,10) кДж /моль (эВ)
Электронная конфигурация 5f 6 7s 2
Химические свойства
Ковалентный радиус n/a пм
Радиус иона (+4e) 93 (+3e) 108 пм
Электроотрицательность
(по Полингу)
1,28
Электродный потенциал Pu←Pu 4+ -1,25В
Pu←Pu 3+ -2,0В
Pu←Pu 2+ -1,2В
Степени окисления 6, 5, 4, 3
Термодинамические свойства простого вещества
Плотность 19,84 /см ³
Молярная теплоёмкость 32,77 Дж /( ·моль)
Теплопроводность (6,7) Вт /( ·)
Температура плавления 914
Теплота плавления 2,8 кДж /моль
Температура кипения 3505
Теплота испарения 343,5 кДж /моль
Молярный объём 12,12 см ³/моль
Кристаллическая решётка простого вещества
Структура решётки моноклинная
Параметры решётки a=6,183 b=4,822 c=10,963 β=101,8
Отношение c/a
Температура Дебая 162

Плутоний — радиоактивный химический элемент группы актиноидов, широко использовавшийся в производстве ядерного оружия (т. н. «оружейный плутоний»), а также (экспериментально) в качестве ядерного топлива для атомных реакторов гражданского и исследовательского назначения. Первый искусственный элемент, полученный в доступных для взвешивания количествах (1942 г.).

В таблице справа приведены основные свойства α-Pu — основной аллотропной модификации плутония при комнатной температуре и нормальном давлении.

История плутония

Изотоп плутония 238 Pu был впервые искусственно получен 23 февраля 1941 года группой американских ученых во главе с Гленном Сиборгом путем облучения ядер урана дейтронами. Примечательно, что только после искусственного получения плутоний был обнаружен в природе: в ничтожно малых количествах 239 Pu обычно содержится в урановых рудах как продукт радиоактивного превращения урана.

Нахождение плутония в природе

В урановых рудах в результате захвата нейтронов (например, нейтронов из космического излучения) ядрами урана образуется нептуний (239 Np), продуктом β-распада которого и является природный плутоний-239. Однако плутоний образуется в таких микроскопических количествах (0,4—15 частей Pu на 10 12 частей U), что о его добыче из урановых руд не может быть и речи.

Происхождение названия плутоний

В 1930 году астрономический мир был взбудоражен замечательной новостью: открыта новая планета, о существовании которой давно говорил Персиваль Ловелл, астроном, математик и автор фантастических очерков о жизни на Марсе. На основе многолетних наблюдений за движениями Урана и Нептуна Ловелл пришел к заключению, что за Нептуном в солнечной системе должна быть еще одна, девятая планета, отстоящая от Солнца в сорок раз дальше, чем Земля.

Эта планета, элементы орбиты которой Ловелл рассчитал еще в 1915 году, и была обнаружена на фотографических снимках, полученных 21, 23 и 29 января 1930 г. астрономом К. Томбо в обсерватории Флагстафф (США ) . Планету назвали Плутоном . По имени этой планеты, расположенной в солнечной системе за Нептуном, был назван плутонием 94-й элемент, искусственно полученный в конце 1940 г. из ядер атомов урана группой американских ученых во главе с Г. Сиборгом.

Физические свойства плутония

Существует 15 изотопов плутония — В наибольших количествах получаются изотопы с массовыми числами от 238 до 242:

238 Pu -> (период полураспада 86 лет, альфа-распад) -> 234 U,

Этот изотоп используется почти исключительно в РИТЭГ космического назначения, например, на всех аппаратах, улетавших дальше орбиты Марса.

239 Pu -> (период полураспада 24 360 лет, альфа-распад) -> 235 U,

Этот изотоп наиболее подходит для конструирования ядерного оружия и ядерных реакторов на быстрых нейтронах.

240 Pu -> (период полураспада 6580 лет, альфа-распад) -> 236 U, 241 Pu -> (период полураспада 14.0 лет, бета-распад) -> 241 Am, 242 Pu -> (период полураспада 370 000 лет, альфа-распад) -> 238 U

Эти три изотопа серьёзного промышленного значения не имеют, но получаются, как побочные продукты, при получении энергии в ядерных реакторах на уране, путём последовательного захвата нескольких нейтронов ядрами урана-238. Изотоп 242 по ядерным свойствам наиболее похож на уран-238. Америций-241, получавшийся при распаде изотопа 241, использовался в детекторах дыма.

Плутоний интересен тем, что от температуры затвердевания до комнатной претерпевает шесть фазовых переходов, больше, чем любой другой химический элемент. При последнем плотность увеличивается скачком на 11%, в результате, отливки из плутония растрескиваются. Стабильной при комнатной температуре является альфа-фаза, характеристики которой и приведены в таблице. Для применения более удобной является дельта-фаза, имеющая меньшую плотность, и кубическую объёмно-центрированную решётку. Плутоний в дельта-фазе весьма пластичен, в то время, как альфа-фаза хрупкая. Для стабилизации плутония в дельта-фазе применяется легирование трёхвалентными металлами (в первых ядерных зарядах использовался галлий).

Применение плутония

Первый ядерный заряд на основе плутония был взорван 16 июля 1945 года на полигоне Аламогордо (испытание под кодовым названием «Тринити»).

Биологическая роль плутония

Плутоний высокотоксичен; ПДК для 239 Pu в открытых водоемах и воздухе рабочих помещений составляет соответственно 81,4 и 3,3*10 −5 Бк/л. Большинство изотопов плутония обладают высокой величиной плотности ионизации и малой длиной пробега частиц, поэтому его токсичность обусловлена не столько его химическими свойствами (вероятно, в этом отношении плутоний токсичен не более, чем другие тяжелые металлы), сколько ионизирующим действием на окружающие ткани организма. Плутоний относится к группе элементов с особо высокой радиотоксичностью. В организме плутоний производит большие необратимые изменения в скелете, печени, селезенке, почках, вызывает рак. Максимально допустимое содержание плутония в организме не должно превышать десятых долей микрограмма.

Художественные произведения связанные с темой плутоний

— Плутоний использовался для машины De Lorean DMC-12 в фильме Назад в будущее как топливо для накопителя потока для перемещения в будущее или в прошлое.

— Из плутония состоял заряд атомной бомбы, взорванной террористами в Денвере, США, в произведении Тома Клэнси «Все страхи мира»

— Кэндзабуро Оэ «Записки пинчранера»

— В 2006 году компанией «Beacon Pictures» был выпущен фильм «Плутоний-239» («Pu-239» )

Человечество всегда пребывало в поисках новых источников энергии, способных решить множество проблем. Однако далеко не всегда они являются безопасными. Так, в частности, широко применяемые сегодня хотя и способны выработать просто колоссальное количество такой нужной всем электрической энергии, все же несут в себе смертельную опасность. Но, помимо в мирных целях, некоторые страны нашей планеты научились использовать ее и в военных, в особенности для создания ядерных боеголовок. В данной статье пойдет речь об основе такого разрушительного оружия, название которой - оружейный плутоний.

Краткая справка

В этой компактной форме металла содержится минимум 93,5 % изотопа 239Pu. Оружейный плутоний назвали так для того, чтобы его было можно отличить от «реакторного собрата». В принципе, плутоний всегда образовывается в абсолютно любом ядерном реакторе, который, в свою очередь, работает на низкообогащённом или природном уране, содержащем, по большей части, изотоп 238U.

Применение в военной отрасли

Оружейный плутоний 239Pu - основа ядерного вооружения. При этом применение изотопов с массовыми числами 240 и 242 неактуально, поскольку они создают очень высокий фон нейтронов, что в итоге затрудняет создание и конструирование высокоэффективных ядерных боекомплектов. Помимо этого, изотопы плутония 240Pu и 241Pu обладают значительно меньшим периодом полураспада по сравнению с 239Pu, поэтому детали из плутония сильно нагреваются. Именно в связи с этим в ядерный боеприпас инженеры вынуждены дополнительно добавлять элементы для отвода лишнего тепла. Кстати, 239Pu в чистом виде теплее тела человека. Нельзя также не учитывать и факт того, что продукты процесса распада тяжелых изотопов подвергают вредоносным изменениям кристаллическую решетку металла, а это вполне закономерно изменяет конфигурацию деталей из плутония, что, в конце концов, может вызвать полный отказ ядерного взрывного устройства.

По большому счету, все перечисленные трудности можно преодолеть. И на практике уже неоднократно проходили испытания взрывных устройств на основе именно «реакторного» плутония. Но следует понимать, что в ядерных боеприпасах далеко не последнюю позицию занимает их компактность, малая собственная масса, долговечность и надежность. В связи с этим в них применяется исключительно оружейный плутоний.

Конструктивные особенности производственных реакторов

Практически весь плутоний в России был выработан в реакторах, оборудованных графитовым замедлителем. Каждый из реакторов возведен вокруг цилиндрически собранных блоков из графита.

В собранном виде графитовые блоки имеют между собой специальные щели для обеспечения беспрерывной циркуляции охладителя, в качестве которого используется азот. В собранной конструкции имеются и вертикально расположенные каналы, созданные для прохождения по ним водяного охлаждения и топлива. Сама по себе сборка жестко опирается на структуру с отверстиями под каналами, используемыми для отгрузки уже облученного топлива. При этом каждый из каналов находится в тонкостенной трубе, отлитой из легковесного и особопрочного алюминиевого сплава. Большая часть описываемых каналов имеет 70 топливных стержней. Вода для охлаждения протекает непосредственно вокруг стержней с топливом, отводя от них излишки тепла.

Повышение мощности производственных реакторов

Изначально первый реактор «Маяк» функционировал с мощностью 100 тепловых МВт. Однако главный руководитель советской программы по разработке ядерного оружия внес предложение, которое заключалось в том, чтобы реактор в зимнее время работал с мощностью 170-190 МВт, а в летний период времени - 140-150 МВт. Такой подход позволил реактору производить почти 140 граммов драгоценного плутония в сутки.

В 1952 году были проведены полноценные научно-исследовательские работы, с целью увеличения производственной мощности функционирующих реакторов такими методами:

  • Путем увеличения потока воды, используемой для охлаждения и протекающей через активные зоны ядерной установки.
  • Посредством наращивания сопротивления явлению коррозии, возникающей вблизи вкладыша каналов.
  • Уменьшением скорости окисления графита.
  • Наращиванием температуры внутри топливных элементов.

В итоге пропускная способность циркулирующей воды значительно возросла после того, как был увеличен зазор между топливом и стенками канала. От коррозии также удалось избавиться. Для этого выбрали наиболее подходящие алюминиевые сплавы и начали активно добавлять бихромат натрия, что, в конечном счете, повысило мягкость охлаждающей воды (рН стал равен порядка 6.0-6.2). Окисление графита перестало быть актуальной проблемой после того, как для его охлаждения стали применять азот (до этого использовался исключительно воздух).

На закате 1950-х нововведения были полностью реализованы на практике, что позволило уменьшить вызываемое радиацией крайне ненужное раздувание урана, значительно снизить тепловое упрочнение стержней из урана, улучшить сопротивление оболочки и повысить контроль качества производства.

Производство на «Маяке»

"Челябинск-65" - один из тех самых секретных заводов, на котором происходило создание оружейного плутония. На предприятии было несколько реакторов, с каждым из которых мы познакомимся поближе.

Реактор А

Установка была спроектирована и создана под руководством легендарного Н. А. Доллежаля. Работала она с мощностью 100 МВт. В реакторе имелось 1149 вертикально расположенных управляющих и топливных каналов в графитовом блоке. Полная масса конструкции составляла порядка 1050 тонн. Практически все каналы (кроме 25) загружались ураном, полная масса которого составляла 120-130 тонн. 17 каналов использовались для управляющих стержней, а 8 - для проведения экспериментов. Максимальный показатель проектного тепловыделения топливного элемента равнялось 3,45 кВт. На первых порах реактор производил около 100 грамм плутония в день. Впервые металлический плутоний был произведен 16 апреля 1949 года.

Технологические недостатки

Практически сразу были выявлены довольно серьёзные проблемы, которые заключались в коррозии алюминиевых вкладышей и покрытия топливных элементов. Также разбухали и повреждались урановые стержни и вытекала охлаждающая вода непосредственно в сердцевину реактора. После каждой протечки реактор приходилось останавливать на время до 10 часов с целью осушить графит воздухом. В январе 1949 года были заменены вкладыши в каналы. После этого запуск установки произошел 26 марта 1949 года.

Оружейный плутоний, производство которого на реакторе А сопровождалось всяческими трудностями, вырабатывался в период 1950-1954 годов при средней мощности агрегата 180 МВт. Последующая работа реактора начала сопровождаться более интенсивным его использованием, что вполне закономерно привело и к более частым остановкам (до 165 раз в месяц). В итоге, в октябре 1963 года реактор был остановлен и возобновил свою работу лишь весной 1964 года. Свою кампанию он полностью закончил в 1987 году и за весь период многолетнего функционирования произвел 4,6 тонны плутония.

Реакторы АВ

На предприятии "Челябинск-65" три реактора АВ было решено построить осенью 1948 года. Их производственная мощность составляла 200-250 грамм плутония в день. Главным конструктором проекта был А. Савин. Каждый реактор насчитывал 1996 каналов, 65 из них были контрольными. В установках была использована техническая новинка - каждый канал снабдили специальным детектором утечки охлаждающей жидкости. Такой ход позволил менять вкладыши без прекращения работы самого реактора.

Первый год функционирования реакторов показал, что они вырабатывали порядка 260 граммов плутония в сутки. Однако уже со второго года работы мощность постепенно наращивали, и уже в 1963 году ее показатель составил 600 МВт. После второго капитального ремонта была полностью решена проблема с вкладышами, а мощность уже составила 1200 МВт с ежегодным производством плутония 270 килограмм. Эти показатели сохранились до полного закрытия реакторов.

Реактор АИ-ИР

Челябинское предприятие использовало данную установку в период с 22 декабря 1951 года до 25 мая 1987 года. Помимо урана, реактор также производил кобальт-60 и полоний-210. Изначально на объекте производили тритий, но позже начали получать и плутоний.

Также завод по переработке оружейного плутония имел в строю реакторы, работающие на тяжелой воде и единственный легководный реактор (имя его - «Руслан»).

Сибирский гигант

"Томск-7" - именно такое название носил завод, на котором расположились пять реакторов для создания плутония. Каждый из агрегатов применял графит с целью замедлить нейтроны и обычную воду для обеспечения надлежащего охлаждения.

Реактор И-1 работал с системой охлаждения, в которой вода проходила единожды. Однако остальные четыре установки были снабжены замкнутыми первичными контурами, оборудованными теплообменниками. Такая конструкция позволяла дополнительно вырабатывать еще и пар, который в свою очередь помогал в производстве электричества и обогрева различных жилых помещений.

"Томск-7" имел также и реактор под названием ЭИ-2, который, в свою очередь, имел двойное назначение: производил плутоний и за счет вырабатываемого пара генерировал 100 МВт электроэнергии, а также 200 МВт тепловой энергии.

Важная информация

По заверениям ученых, полураспад оружейного плутония составляет порядка 24 360 лет. Огромная цифра! В связи с этим особо острым становится вопрос: «Как же правильно обойтись с отходами производства данного элемента?» Наиболее оптимальным вариантом считается постройка специальных предприятий для последующей переработки оружейного плутония. Объясняется это тем, что в таком случае элемент уже нельзя будет использовать в военных целях и будет подконтролен человеку. Именно так проводится утилизация оружейного плутония в России, однако Соединенные Штаты Америки пошли другим путем, нарушив тем самым свои международные обязательства.

Так, американское правительство предлагает уничтожать высокообогащенное не промышленным способом, а путем разбавления плутония и хранения его в специальных емкостях на глубине равной 500 метрам. Само собой, что в таком случае материал легко можно будет в любой момент извлечь из земли и вновь пустить его на военные цели. Как утверждает президент РФ Владимир Путин, изначально страны договаривались уничтожать плутоний не таким методом, а проводить утилизацию на промышленных объектах.

Отдельного внимания заслуживает стоимость оружейного плутония. По оценкам экспертов, десятки тонн этого элемента вполне могут стоить несколько миллиардов американских долларов. А некоторые специалисты ми вовсе оценили 500 тонн оружейного плутония аж в 8 триллионов долларов. Сумма реально впечатляющая. Чтобы было понятнее, насколько это большие деньги, скажем, что в последние десять лет 20 века среднегодовой показатель ВВП России составлял 400 миллиардов долларов. То есть, по сути, реальная цена оружейного плутония равнялась двадцати годовым ВВП Российской Федерации.

Металлический плутоний используется в ядерном оружии и служит в качестве ядерного топлива. Оксиды плутония используются в качестве энергетического источника для космической техники и находят свое применение в ТВЭЛах. Плутоний используется в элементах питания космических аппаратов. Ядра плутония-239 способны к цепной ядерной реакции при воздействии на них нейтронов, поэтому этот изотоп можно использовать как источник атомной энергии. Более частое использование плутония-239 в ядерных бомбах обусловлено тем, что плутоний занимает меньший объем в сфере, следовательно можно выиграть во взрывной силе бомбы за счет этого свойства. Ядро плутония при ядерной реакции испускает всреднем около 2,895 нейтрона против 2,452 нейтрона у урана-235. Однако затраты на производство плутония примерно в шесть раз больше по сравнению с ураном-235.

Изотопы плутония нашли свое применение при синтезе трансплутониевых элементов. Таким образом, смешанный оксид плутония-242 в 2009 г. и бомбардировки ионами кальция-48 в 2010 году того же изотопа были использованы для получения унунквадия. В Оук-Риджской национальной лаборатории длительное нейтронное облучение Pu используется для получения 24496Cm, 24296Cm, 24997Bk, 25298Cf и 25399Es и 257100Fm. За исключением Pu, все оставшиеся трансурановые элементы производились в прошлом в исследовательских целях. Благодаря нейтронному захвату изотопов плутония в 1944 году Г. Т. Сиборгом и его группой был одержан первый изотоп америция — 24195Am Am). Для подтверждения того, что актиноидов всего 14 был произведен в 1966 году в Дубне синтез ядер резерфордия под руководством академика Г. Н. Флёрова:

24294Pu + 2210Ne → 260104Rf + 4n.

δ-Стабилизированные сплавы плутония применяются при изготовлении топливных элементов, так как они обладают лучшими металлургическими свойствами по сравнению с чистым плутонием, который при нагревании претерпевает фазовые переходы.

«Сверхчистый» плутоний используется в ядерном оружии ВМФ США и применяется на кораблях и подводных лодках под ядерной защитой из свинца, что снижает дозовую нагрузку на команду.

Плутоний-238 и плутоний-239 являются самыми широко синтезируемыми изотопами.

  • Первый ядерный заряд на основе плутония был взорван 16 июля 1945 года на полигоне Аламогордо.

Ядерное оружие

Плутоний очень часто применялся в ядерных бомбах. Историческим фактом является сброс ядерной бомбы на Нагасаки в 1945 г. США. Бомба, сброшенная на этот город, содержала в себе 6,2 кг плутония. Мощность взрыва составила 21 килотонну. К концу 1945 года погибло 60-80 тыс. человек. По истечении 5 лет, общее количество погибших, с учётом умерших от рака и других долгосрочных воздействий взрыва, могло достичь или даже превысить 140 000 человек.

Принцип, по которому происходил ядерный взрыв с участием плутония, заключался в конструкции ядерной бомбы. «Ядро» бомбы состояло из сферы, наполненной плутонием-239, которая в момент столкновения с землей сжималась до миллиона атмосфер за счет конструкции и благодаря окружающему эту сферу взрывчатому веществу. После удара ядро расширялось в объеме и в плотности за десяток микросекунд, при этом сжимаемая сборка проскакивала критическое состояние на тепловых нейтронах и становилась существенно сверхкритической на быстрых нейтронах, то есть начиналась цепная ядерная реакция с участием нейтронов и ядер элемента. При этом следовало учитывать, что бомба не должна была взорваться преждевременно. Однако это практически невозможно, так как, чтобы сжать плутониевый шар за десяток наносекунд всего на 1 см, требуется придать веществу ускорение, в десятки триллионов раз превышающее ускорение свободного падения. При конечном взрыве ядерной бомбы температура повышается до десятков миллионов градусов. Следует отметить, что в наше время для создания полноценного ядерного заряда достаточно 8-9 кг этого элемента.

Всего один килограмм плутония-239 может произвести взрыв, который будет эквивалентен 20000 т тротила. Даже 50 г элемента при делении всех ядер произведут взрыв, равный детонации 1000 т тротила. Данный изотоп является единственным подходящим нуклидом для применения в ядерном оружии, так как присутствие хотя бы 1 % Pu приведет к образованию большого количества нейтронов, которые не позволят эффективно применять пушечную схему заряда ядерной бомбы. Остальные изотопы рассматриваются только из-за их вредного действия.

Плутоний-240 может находиться в ядерной бомбе в малых количествах, однако если его содержание будет повышено, произойдет преждевременная цепная реакция. Данный изотоп имеет высокую вероятность спонтанного деления, что делает невозможным большой процент его содержания в делящемся материале.

По данным телеканала Al-Jazeera, Израиль имеет около 118 боеголовок с плутонием в качестве радиоактивного вещества. Считается, что Южная Корея имеет около 40 кг плутония, количества которого достаточно для производства 6 ядерных ракет. По оценкам МАГАТЭ в 2007 году, производимого в Ираке плутония хватало на две ядерные боеголовки в год. В 2006 г. Пакистан начал строительство ядерного реактора, который позволит нарабатывать около 200 кг радиоактивного элемента в год. В пересчете на количество ядерных боеголовок, эта цифра будет составлять приблизительно 40-50 бомб.

Между Россией и США было подписано несколько договоров на протяжении первого десятилетия 21-го века. Так в частности, в 2003 г. был подписан договор о переработке 68 т плутония на Балаковской АЭС в MOX-топливо до 2024 года. В 2007 г. страны подписали план об утилизации Россией 34 т плутония, созданного для российских оружейных программ. В 2010 году был подписан договор об утилизации ядерного оружия, в частности плутония, количества которого хватило бы на производство 17 тыс. ядерных боеголовок.

В 2010 году 17 ноября между США и Казахстаном было подписано соглашение о закрытии промышленного ядерного реактора БН-350 в городе Актау, который вырабатывал электроэнергию за счет плутония. Этот реактор был первым в мире и Казахстане опытно-промышленным реактором на быстрых нейтронах; срок его работы составил 27 лет.

Ядерное загрязнение

В период, когда начинались ядерные испытания в основе которых лежал плутоний, и когда его радиоактивные свойства только начинались изучаться, в атмосферу было выброшено свыше 5 т элемента. С 1970-х годов доля плутония в радиоактивном заражении атмосферы Земли начала возрастать.

В северо-западную часть Тихого океана плутоний попал в основном благодаря ядерным испытаниям. Повышенное содержание элемента объясняется проведением США ядерных испытаний на территории Маршалловых Островов в Тихоокеанском полигоне в 1950-х годах. Основное загрязнение от этих испытаний пришлось на 1960 года. Исходя из оценки ученых, нахождение плутония в тихом океане повышено по сравнению с общим распространением ядерных материалов на земле. По некоторым расчетам, доза облучения, исходящего от цезия-137, на атоллах Маршалловых островов составляет примерно 95 %, а на остальные 5 приходятся изотопы стронция, америция и плутония.

Плутоний в океане переносится благодаря физическим и биогеохимическим процессам. Время нахождения плутония в поверхностных водах океана составляет от 6 до 21 года, что, как правило, короче, чем у цезия-137. В отличие от этого изотопа, плутоний является элементом, частично реагирующим с окружающей средой и образующим 1-10 % нерастворимых соединений от общей массы, попавшей в окружающую среду. Плутоний в океане выпадает на дно вместе с биогенными частицами, из которых он восстанавливается в растворимые формы в результате микробного разложения. Наиболее распространенными из его изотопов в морской среде являются плутоний-239 и плутоний-240.

В январе 1968 года, американский самолет B-52 с четырьмя зарядами ядерного оружия в результате неуспешной посадки разбился на льду вблизи Туле, на территории Гренландии. Столкновение вызвало взрыв и фрагментацию оружия, в результате чего плутоний попал на льдину. После взрыва верхний слой загрязненного снега была снесен и в результате образовалась трещина, через которую плутоний попал в воду. Для уменьшения урона природе было собрано примерно 1,9 млрд литров снега и льда, которые могли подвергнуться радиоактивному загрязнению. Впоследствии оказалось, что один из четырех зарядов так и не был найден.

Известен случай, когда советский космический аппарат Космос-954 24 января 1978 года с ядерным источником энергии на борту при неконтролируемом сходе с орбиты упал на территорию Канады. Данное происшествие привело к попаданию в окружающую среду 1 кг плутония-238 на площадь около 124 000 м² .

Попадание плутония в окружающую среду связано не только с техногенными происшествиями. Известны случаи утечки плутония как из лабораторных, так и из заводских условий. Было около 22 аварийных случаев утечки из лабораторий урана-235 и плутония-239. На протяжении 1953-1978 гг. аварийные случаи привели к потере от 0,81 до 10,1 кг Pu. Происшествия на промышленных предприятиях суммарно привели к смерти двух человек в г. Лос-Аламос из-за двух случаев аварий и потерь 6,2 кг плутония. В городе Саров в 1953 и 1963 гг. примерно 8 и 17,35 кг попало за пределы ядерного реактора. Один из них привел к разрушению ядерного реактора в 1953 году.

Уровни радиоактивности изотопов по состоянию на апрель 1986 года.

Известен случай аварии на Чернобыльской АЭС, который произошел 26 апреля 1986 года. В результате разрушения четвертного энергоблока в окружающую среду было выброшено 190 т радиоактивных веществ на площадь около 2200 км². Восемь из 140 т радиоактивного топлива реактора оказались в воздухе. Загрязненная площадь составила 160 000 км² . Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии. Суммарная активность веществ, выброшенных в окружающую среду, составила, по различным оценкам, до 14×10 Бк, в том числе:

  • 1,8 ЭБк — 13153I,
  • 0,085 ЭБк — 13755Cs,
  • 0,01 ЭБк — 9038Sr
  • 0,003 ЭБк — изотопы плутония,
  • на долю благородных газов приходилось около половины от суммарной активности.

В настоящее время большинство жителей загрязнённой зоны получает менее 1 мЗв в год сверх естественного фона.

Источник энергии и тепла

Как известно, атомная энергия применяется для преобразования в электроэнергию за счет нагревания воды, которая испаряясь и образуя перегретый пар вращает лопатки турбин электрогенераторов. Преимуществом данной технологии является отсутствие каких либо парниковых газов, которые оказывают пагубное воздействие на окружающую среду. По состоянию за 2009 год 438 атомных станций по всему миру генерировали примерно 371,9 ГВт электроэнергии. Однако минусом ядерной промышленности являются ядерные отходы, которых в год отрабатывается приблизительно 12000 т. Данное количество отработанного материала представляет собой довольно сложную задачу перед сотрудниками АЭС. К 1982 году было подсчитано, что аккумулировано ~300 т плутония.

Таблетка диоксида плутония-238.

Желто-коричневый порошок, состоящий из диоксида плутония, способен выдерживать нагревание до температуры 1200 °C. Синтез соединения происходит с помощью разложения тетрагидроксида или тетранитрата плутония в атмосфере кислорода:

.

Полученный порошок шоколадного цвета спекается и нагревается в токе влажного водорода до 1500 °C. При этом образуются таблетки плотностью 10,5-10,7 г/см³, которые можно использовать в качестве ядерного топлива. Диоксид плутония является самым стабильным и инертным из оксидов плутония и посредством нагревания до высоких температур разлагается на составляющие, и потому применяется при переработке и хранении плутония, а также его дальнейшего использования как источника электроэнергии. Один килограмм плутония эквивалентен примерно 22 млн кВт·ч тепловой энергии.

В СССР было произведено несколько РИТЭГов Топаз, которые были предназначены для генерации электричества для космических аппаратов. Эти аппараты были предназначены работать с плутонием-238, который является α-излучателем. После падения Советского Союза США закупили несколько таких аппаратов для изучения их устройства и дальнейшего применения в своих долговременных космических программах.

РИТЭГ зонда Новые Горизонты.

Вполне достойной заменой плутонию-238 можно было бы назвать полоний-210. Его тепловыделение составляет 140 Вт/г, а всего один грамм может разогреться до 500 °C. Однако из-за его чрезвычайно малого для космических миссий периода полураспада применение этого изотопа в космической отрасли сильно ограничено.

Плутоний-238 в 2006 г. при запуске зонда New Horizons к Плутону нашел свое применение в качестве источника питания для зонда. Радиоизотопный генератор содержал 11 кг высокочистого диоксида Pu, производившего в среднем 220 Вт электроэнергии на протяжении всего пути. Высказывались опасения о неудачном запуске зонда, однако он все таки состоялся. После запуска зонд развил скорость 36000 миль/ч благодаря силам гравитации Земли. В 2007 году благодаря гравитационному маневру вокруг Юпитера его скорость повысилась еще на 9 тыс. миль, что позволит ему приблизиться на минимальное расстояние к Плутону в июле 2015 года и затем продолжить свое наблюдение за поясом Койпера.

Зонды Галилео и Кассини были также оборудованы источниками энергии, в основе которых лежал плутоний. Изотоп будет применяться и на будущих миссиях, например марсоход Curiosity будет получать энергию благодаря плутонию-238. Его спуск на поверхность Марса планируется провести в августе 2012 года. Марсоход будет использовать последнее поколение РИТЭГов, называемое Multi-Mission Radioisotope Thermoelectric Generator. Это устройство будет производить 125 Вт электрической мощности, а по истечению 14 лет — 100 Вт. Для работы марсохода будет производиться 2,5 кВт·ч энергии за счет распада ядер. Плутоний-238 является оптимальным источником энергии, выделяющим 0,56 Вт·г. Применение этого изотопа с теллуридом свинца, который используется в качестве термоэлектрического элемента, образует очень компактный и долговременный источник электричества без каких бы то ни было движущих частей конструкции, что позволяет «сэкономить» пространство космических аппаратов.

РИТЭГ SNAP-27, применявшийся в миссии Аполлон-14.

Несколько килограммов PuO 2 использовались не только на Галилео, но и на некоторых миссиях Аполлонов. Генератор электроэнергии SNAP-27, тепловая и электрическая мощность которого составляла 1480 Вт и 63,5 Вт соответственно, содержал 3,735 кг диоксида плутония-238. Для уменьшения риска взрыва или иных возможных происшествий, использовался бериллий в качестве термостойкого, лёгкого и прочного элемента. SNAP-27 был последним типом генераторов, использовавшихся NASA для космических миссий; предыдущие типы использовали другие источники электроэнергии.

При проведении пассивного сейсмического эксперимента на Луне в миссии Аполлон-11 были использованы два радиоизотопных тепловых источника мощностью 15 Вт, которые содержали 37,6 г диоксида плутония в виде микросфер. Генератор был использован в миссиях Аполлона-12, 14, 15, 16, 17. Он был призван обеспечивать электроэнергией научное оборудование, установленное на космических аппаратах. Во время миссии Аполлона-13 произошло схождение лунного модуля с траектории, в результате чего он сгорел в плотных слоях атмосферы. Внутри SNAP-27 был использован вышеупомянутый изотоп, который окружен устойчивыми к коррозии материалами и будет храниться в них еще 870 лет.

Плутоний-236 и плутоний-238 применяется для изготовления атомных электрических батареек, срок службы которых достигает 5 и более лет. Их применяют в генераторах тока, стимулирующих работу сердца. По состоянию на 2003 г. в США было 50-100 человек, имеющих плутониевый кардиостимулятор. Применение плутония-238 может распространиться на костюмы водолазов и космонавтов. Бериллий вместе с вышеуказанным изотопом применяется как источник нейтронного излучения.

В 2007 г. Великобритания начала снос старейшей ядерной электростанции Calder Hall на плутонии, которая начала свою работу 17 октября 1956 года и завершила 29 сентября 2007.

Реакторы-размножители

Схематическое изображение реакторов-размножителей на быстрых нейтронах с жидкометаллическим теплоносителем, с интегральной и петлевой компоновкой оборудования.

Для получения больших количеств плутония строятся реакторы-размножители, которые позволяют нарабатывать значительные количества плутония. Реакторы названы именно «размножителями» потому, что с их помощью возможно получение делящегося материала в количестве, превышающем его затраты на получение.

В США строительство первых реакторов данного типа началось еще до 1950 г. В СССР и Великобритании к их созданию приступили в начале 1950 гг. Однако первые реакторы были созданы для изучения нейтронно-физических характеристик реакторов с жестким спектром нейтронов. Поэтому первые образцы должны были продемонстрировать не большие производственные количества, а возможность реализации технических решений, закладываемых в первые реакторы такого типа.

Отличие реакторов-разможителей от обычных ядерных реакторов состоит в том, что нейтроны в них не замедляются, то есть отсутствует замедлитель нейтронов, для того, чтобы их как можно больше прореагировало с ураном-238. После реакции образуются атомы урана-239, который в дальнейшем и образует плутоний-239. В таких реакторах центральная часть, содержащая диоксид плутония в обедненном диоксиде урана, окружена оболочкой из еще более обедненного диоксида урана-238, в которой и образуется Pu. Используя вместе U и U такие реакторы могут производить из природного урана энергии в 50-60 раз больше, позволяя таким образом использовать запасы наиболее пригодных для переработки урановых руд. Коэффициент воспроизводства рассчитывается отношением произведенного ядерного топлива к затраченному. Однако достижение высоких показателей воспроизводства нелегкая задача. ТВЭЛы в них должны охлаждаться чем-то отличным от воды, которая уменьшает их энергию. Было предложено использование жидкого натрия в качестве охлаждающего элемента. В реакторах-размножителях используют обогащенный более 15 % по массе уран-235, для достижения необходимого нейтронного облучения и коэффициента воспроизводства примерно 1-1,2.

В настоящее время экономически более выгодно получение урана из урановой руды, обогащенной до 3 % ураном-235, чем размножение урана в плутоний-239 с применением урана-235, обогащенного на 15 %. Проще говоря, преимуществом бридеров является способность в процессе работы не только производить электроэнергию, но и утилизировать непригодный в качестве ядерного горючего уран-238.



Поделиться